簡易檢索 / 詳目顯示

研究生: 陳典君
Chen, Dian-Jiun
論文名稱: A Study of Drosophila melanogaster Cytotoxic T-Lymphocyte Antigen-2-like Protein, Crammer
果蠅類第二型細胞毒性T淋巴抗原(Crammer)之特性分析
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 70
中文關鍵詞: 半胱胺酸蛋白酶半胱胺酸蛋白酶抑制劑長期記憶
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Drosophila melanogaster CTLA-2-like protein, crammer, is a small (9.5 kDa) protein with 79 amino acids. The protein sequence is homologous to the proregions of certain cysteine proteases, such as cathepsins, suggesting that it might act as a propeptide-like cysteine protease inhibitor. In addition, it has been reported to be a key factor in establishing D. melanogaster long-term memory (LTM). However, details of regulatory mechanism on crammer toward LTM remain unclear. Recent studies indicated that crammer may regulate the activity of cathepsins to control LTM formation. In this study, biochemical and biophysical methods are applied to clarify the relationship between crammer and cathepsins. Our data showed that crammer has monomeric and dimeric forms depend on distinct pH environment. Under neutral pH condition, crammer exists predominantly dimeric state, while at acidic pH, monomer is prevalent. Furthermore, our circular dichroism and NMR results revealed that the crammer at neutral pH can form a stable and well-packed structure but not for that at acidic pH. Besides, we also found that a disulfide bridge is critical for the dimerization of crammer. In vivo, crammer probably exists in monomeric form predominantly. According to our inhibitory assay, only monomer can inhibit D. melanogaster cathepsins, whereas dimer and mutant (C72S) cannot. This result indicated that the cysteine residue of crammer may play an important role in regulating cathepsins activities. Moreover, crammer can act as a strong competitive inhibitor against cathepsins, which the inhibitor constant (Ki) is 0.78 nM. Our NMR data also suggested that crammer at acidic pH can form a well-packed monomeric structure to associate with cathepsins. Finally, we proposed that crammer probably blocks the active site of cathepsin by using the staphostatin-like inhibitory mechanism.


    果蠅的類第二型細胞毒性T淋巴抗原(CTLA-2-like),或稱Crammer,為一具有79個胺基酸的小分子蛋白質(分子量約9.5 kDa)。其蛋白質序列與某些半胱胺酸蛋白酶(Cathepsins)的前段區域(proregions)具有高度的相似性,這也意謂著Crammer可能與半胱胺酸蛋白酶的前段區域具有相似的功能,即可用來抑制此蛋白酶的活性。此外,文獻報導指出它也是建立果蠅長期記憶的重要因子之一。然而,對於Crammer調控長期記憶的詳細機制目前仍然未知。最近的研究指出,Crammer或許是藉由調控Cathepsins的活性來控制長期記憶的形成。在本研究中,我們應用生物化學以及生物物理的方法來闡明Crammer和Cathepsins之間的關係。實驗數據顯示,Crammer在不同的pH環境下具有單體和二聚體的狀態。在中性pH條件下,Crammer主要以二聚體的狀態存在,而在酸性環境下,則是以單體佔多數。另外,圓二色光譜和核磁共振光譜的結果顯示Crammer在中性pH之下可以形成穩定且摺疊好的結構,而在酸性pH之下則無法。我們也發現雙硫鍵是形成二聚體的主因。在活的生物體內,Crammer可能主要以單體的形式存在。根據活性抑制分析的結果顯示,只有單體可以抑制果蠅的Cathepsins,而二聚體和突變種(C72S)則沒有抑制的活性。此結果指出Crammer的半胱胺酸在調控Cathepsins的活性可能扮演著重要的角色。此外,Crammer對於Cathepsins是一種很強的競爭型抑制劑,其抑制常數(Ki)為0.78 nM。同時,核磁共振光譜的結果也指出在酸性pH之下,Crammer與Cathepsins結合後可形成一個折疊良好的單體結構。最後,我們提出Crammer可能藉由類似Staphostatin的抑制機制阻擋了Cathepsins的活性區域。

    Abbreviations 1 Chapter 1. Introduction 3 1.1 Learning and memory 3 1.2 Cysteine proteases 4 1.3 Cysteine protease inhibitors 5 1.4 The theme of this thesis 6 Figures: 7 Figure 1.1 Multiple sequence alignment 7 Figure 1.2 Three dimensional structures of cathepsins 8 Figure 1.3 Experimental strategy 9 Chapter 2. Materials and Methods 10 2.1 Construction of recombinant crammer 10 2.2 Construction of crammer mutant 10 2.3 Protein expression and purification 11 2.4 Quantification of protein concentration 11 2.5 Gel filtration chromatography 12 2.6 Chemical cross-linking 12 2.7 Isolation of monomeric and dimeric forms of crammer 13 2.8 MALDI-TOF MS analyses 13 2.9 Determination of free thiols 14 2.10 Tricine-SDS-PAGE 14 2.11 Western blot 15 2.12 Circular dichroism spectroscopy 15 2.13 NMR spectroscopy 16 2.14 Isolation of cathepsin X from Drosophila melanogaster 16 2.15 Enzymatic assay of cathepsin X 17 2.16 Quantification of cathepsin X protein concentration by E-64 17 2.17 Inhibitory assay 18 2.18 Inhibitory mechanism 19 2.19 Molecular modeling and docking 19 Figures: 21 Figure 2.1 Full length DNA synthesis of crammer 21 Figure 2.2 Construction of recombinant plasmid 22 Figure 2.3 Standard curve for quantifying protein concentration 23 Table: 24 Table 2.1 Primers for crammer DNA synthesis and site-directed mutagenesis 24 Chapter 3. Results and Discussions 25 3.1 Comparison of crammer with related proteins 25 3.2 Protein expression and purification 25 3.3 Oligomeric state assay 26 3.4 Evidence of a disulfide-linked dimer 27 3.5 In vivo assay 28 3.6 Structural assays 29 3.7 Isolation of cathepsin X from Drosophila melanogaster 30 3.8 Inhibitory assay 31 3.9 Molecular modeling and docking 32 3.10 Conclusion 34 Figures: 36 Figure 3.1 Expression of wild-type crammer 36 Figure 3.2 HPLC profile for purification of wild-type crammer 37 Figure 3.3 Mass spectra of wild-type and mutant crammer 38 Figure 3.4 Gel filtration profiles of crammer under distinct pH environment 39 Figure 3.5 Chemical cross-linking 40 Figure 3.6 Isolation of monomeric and dimeric forms of crammer 41 Figure 3.7 Evidence of disulfide-linked dimer 42 Figure 3.8 Matrix-assisted laser desorption/ionization time of flight mass spectrometry 43 Figure 3.9 Determination of free thiols 44 Figure 3.10 In vivo state of crammer in D. melanogaster 45 Figure 3.11 CD spectra of wild-type and mutant crammer at different pH 46 Figure 3.12 Thermal stability 47 Figure 3.13 Mutant crammer, C72S, under different pH 48 Figure 3.14 NMR spectra of mutant crammer (C72S) at pH 6.0 49 Figure 3.15 The overlap of the HSQC spectra 50 Figure 3.16 Isolation of cathepsin X from D. melanogaster 51 Figure 3.17 Concentration determination of cathepsin X 52 Figure 3.18 Inhibitory assay of crammer against cathepsin X 53 Figure 3.19 Determination of inhibitor constant (Ki) by Dixon plot 54 Figure 3.20 Inhibition mechanism 55 Figure 3.21 Molecular modeling and docking 56 Figure 3.22 The surface potential map of Drosophila CP1 and crammer 57 Figure 3.23 Binding model of crammer with Drosophila CP1 58 Tables: 59 Table 3.1 Secondary structure information of wild-type and mutant crammer 59 Table 3.2 Inhibitor constants of cysteine proteases with different inhibitors 60 Appendix 61 Appendix I. Catalytic mechanism of cysteine protease 62 Appendix II. Inhibitory mechanisms directed against cysteine proteases 63 References 64

    1. Kimble, G. A. (1961) Conditioning and Learning, 2nd ed.
    2. Pavlov, I. P. (1927) Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex London: Oxford University.
    3. Quinn, W. G., and Greenspan, R. J. (1984) Learning and courtship in Drosophila: two stories with mutants, Annu Rev Neurosci 7, 67-93.
    4. Tully, T. (1987) Drosophila learning and memory revisited, Trends Neurosci 10, 330-334.
    5. Davis, R. L. (1996) Physiology and biochemistry of Drosophila learning mutants, Physiol Rev 76, 299-317.
    6. Waddell, S., and Quinn, W. G. (2001) Flies, genes, and learning, Annu Rev Neurosci 24, 1283-1309.
    7. Quinn, W. G., Harris, W. A., and Benzer, S. (1974) Conditioned behavior in Drosophila melanogaster, Proc Natl Acad Sci U S A 71, 708-712.
    8. Tully, T., and Quinn, W. G. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster, J Comp Physiol [A] 157, 263-277.
    9. Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994) Genetic dissection of consolidated memory in Drosophila, Cell 79, 35-47.
    10. DeZazzo, J., and Tully, T. (1995) Dissection of memory formation: from behavioral pharmacology to molecular genetics, Trends Neurosci 18, 212-218.
    11. Dubnau, J., and Tully, T. (1998) Gene discovery in Drosophila: new insights for learning and memory, Annu Rev Neurosci 21, 407-444.
    12. Yin, J. C., Del Vecchio, M., Zhou, H., and Tully, T. (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila, Cell 81, 107-115.
    13. Tully, T. (1996) Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives, Proc Natl Acad Sci U S A 93, 13460-13467.
    14. Davis, R. L. (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience, Annu Rev Neurosci 28, 275-302.
    15. Dubnau, J., Chiang, A. S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., Smith, P., Buldoc, F., Scott, R., Certa, U., Broger, C., and Tully, T. (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory, Curr Biol 13, 286-296.
    16. Keene, A. C., and Waddell, S. (2007) Drosophila olfactory memory: single genes to complex neural circuits, Nat Rev Neurosci 8, 341-354.
    17. Comas, D., Petit, F., and Preat, T. (2004) Drosophila long-term memory formation involves regulation of cathepsin activity, Nature 430, 460-463.
    18. Krashes, M. J., and Waddell, S. (2008) Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila, J Neurosci 28, 3103-3113.
    19. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003) A protein interaction map of Drosophila melanogaster, Science 302, 1727-1736.
    20. Deshapriya, R. M., Takeuchi, A., Shirao, K., Isa, K., Watabe, S., Murakami, R., Tsujimura, H., and Yamamoto, Y. (2007) Drosophila CTLA-2-like protein (D/CTLA-2) inhibits cysteine proteinase 1 (CP1), a cathepsin L-like enzyme, Zoolog Sci 24, 21-30.
    21. Barrett, A. J. (1994) Classification of peptidases, Methods Enzymol 244, 1-15.
    22. Rawlings, N. D., and Barrett, A. J. (1994) Families of cysteine peptidases, Methods Enzymol 244, 461-486.
    23. Rawlings, N. D., and Barrett, A. J. (1993) Evolutionary families of peptidases, Biochem J 290 ( Pt 1), 205-218.
    24. Rawlings, N. D., Morton, F. R., and Barrett, A. J. (2006) MEROPS: the peptidase database, Nucleic Acids Res 34, D270-272.
    25. Fan, T. J., Han, L. H., Cong, R. S., and Liang, J. (2005) Caspase family proteases and apoptosis, Acta Biochim Biophys Sin (Shanghai) 37, 719-727.
    26. Yamashima, T. (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates, Prog Neurobiol 62, 273-295.
    27. Berti, P. J., and Storer, A. C. (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases, J Mol Biol 246, 273-283.
    28. Chapman, H. A., Riese, R. J., and Shi, G. P. (1997) Emerging roles for cysteine proteases in human biology, Annu Rev Physiol 59, 63-88.
    29. Grzelakowska-Sztabert, B. (1998) [Molecular mechanisms of apoptosis induced by activation of membrane receptors from the TNF-R superfamily], Postepy Biochem 44, 8-21.
    30. McGrath, M. E. (1999) The lysosomal cysteine proteases, Annu Rev Biophys Biomol Struct 28, 181-204.
    31. Turk, B., Turk, D., and Turk, V. (2000) Lysosomal cysteine proteases: more than scavengers, Biochim Biophys Acta 1477, 98-111.
    32. Lennon-Dumenil, A. M., Bakker, A. H., Wolf-Bryant, P., Ploegh, H. L., and Lagaudriere-Gesbert, C. (2002) A closer look at proteolysis and MHC-class-II-restricted antigen presentation, Curr Opin Immunol 14, 15-21.
    33. Vaes, G., Delaisse, J. M., and Eeckhout, Y. (1992) Relative roles of collagenase and lysosomal cysteine-proteinases in bone resorption, Matrix Suppl 1, 383-388.
    34. Rzychon, M., Chmiel, D., and Stec-Niemczyk, J. (2004) Modes of inhibition of cysteine proteases, Acta Biochim Pol 51, 861-873.
    35. Hanewinkel, H., Glossl, J., and Kresse, H. (1987) Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts, J Biol Chem 262, 12351-12355.
    36. Cuozzo, J. W., Tao, K., Wu, Q. L., Young, W., and Sahagian, G. G. (1995) Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation, J Biol Chem 270, 15611-15619.
    37. Tao, K., Stearns, N. A., Dong, J., Wu, Q. L., and Sahagian, G. G. (1994) The proregion of cathepsin L is required for proper folding, stability, and ER exit, Arch Biochem Biophys 311, 19-27.
    38. Groves, M. R., Coulombe, R., Jenkins, J., and Cygler, M. (1998) Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes, Proteins 32, 504-514.
    39. Nishimura, Y., Kawabata, T., and Kato, K. (1988) Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro, Arch Biochem Biophys 261, 64-71.
    40. Rowan, A. D., Mason, P., Mach, L., and Mort, J. S. (1992) Rat procathepsin B. Proteolytic processing to the mature form in vitro, J Biol Chem 267, 15993-15999.
    41. Khan, A. R., and James, M. N. (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes, Protein Sci 7, 815-836.
    42. Podobnik, M., Kuhelj, R., Turk, V., and Turk, D. (1997) Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen, J Mol Biol 271, 774-788.
    43. Cygler, M., Sivaraman, J., Grochulski, P., Coulombe, R., Storer, A. C., and Mort, J. S. (1996) Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion, Structure 4, 405-416.
    44. Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M., and Turk, V. (1996) Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide, FEBS Lett 384, 211-214.
    45. Coulombe, R., Grochulski, P., Sivaraman, J., Menard, R., Mort, J. S., and Cygler, M. (1996) Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment, EMBO J 15, 5492-5503.
    46. Fox, T., de Miguel, E., Mort, J. S., and Storer, A. C. (1992) Potent slow-binding inhibition of cathepsin B by its propeptide, Biochemistry 31, 12571-12576.
    47. Taylor, M. A., Baker, K. C., Briggs, G. S., Connerton, I. F., Cummings, N. J., Pratt, K. A., Revell, D. F., Freedman, R. B., and Goodenough, P. W. (1995) Recombinant pro-regions from papain and papaya proteinase IV-are selective high affinity inhibitors of the mature papaya enzymes, Protein Eng 8, 59-62.
    48. Carmona, E., Dufour, E., Plouffe, C., Takebe, S., Mason, P., Mort, J. S., and Menard, R. (1996) Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases, Biochemistry 35, 8149-8157.
    49. Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J. E., Weber, E., and Wiederanders, B. (1997) The inhibition of cathepsin S by its propeptide--specificity and mechanism of action, Eur J Biochem 250, 745-750.
    50. Lalmanach, G., Lecaille, F., Chagas, J. R., Authie, E., Scharfstein, J., Juliano, M. A., and Gauthier, F. (1998) Inhibition of trypanosomal cysteine proteinases by their propeptides, J Biol Chem 273, 25112-25116.
    51. Billington, C. J., Mason, P., Magny, M. C., and Mort, J. S. (2000) The slow-binding inhibition of cathepsin K by its propeptide, Biochem Biophys Res Commun 276, 924-929.
    52. Guay, J., Falgueyret, J. P., Ducret, A., Percival, M. D., and Mancini, J. A. (2000) Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides, Eur J Biochem 267, 6311-6318.
    53. Jerala, R., Zerovnik, E., Kidric, J., and Turk, V. (1998) pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation, J Biol Chem 273, 11498-11504.
    54. Denizot, F., Brunet, J. F., Roustan, P., Harper, K., Suzan, M., Luciani, M. F., Mattei, M. G., and Golstein, P. (1989) Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions, Eur J Immunol 19, 631-635.
    55. Delaria, K., Fiorentino, L., Wallace, L., Tamburini, P., Brownell, E., and Muller, D. (1994) Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta, J Biol Chem 269, 25172-25177.
    56. Kurata, M., Hirata, M., Watabe, S., Miyake, M., Takahashi, S. Y., and Yamamoto, Y. (2003) Expression, purification, and inhibitory activities of mouse cytotoxic T-lymphocyte antigen-2alpha, Protein Expr Purif 32, 119-125.
    57. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) A novel inhibitor protein for Bombyx cysteine proteinase is homologous to propeptide regions of cysteine proteinases, FEBS Lett 448, 257-260.
    58. Yamamoto, Y., Watabe, S., Kageyama, T., and Takahashi, S. Y. (1999) Purification and characterization of Bombyx cysteine proteinase specific inhibitors from the hemolymph of Bombyx mori, Arch Insect Biochem Physiol 42, 119-129.
    59. Kurata, M., Yamamoto, Y., Watabe, S., Makino, Y., Ogawa, K., and Takahashi, S. Y. (2001) Bombyx cysteine proteinase inhibitor (BCPI) homologous to propeptide regions of cysteine proteinases is a strong, selective inhibitor of cathepsin L-like cysteine proteinases, J Biochem 130, 857-863.
    60. Yamamoto, Y., Kurata, M., Watabe, S., Murakami, R., and Takahashi, S. Y. (2002) Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases, Curr Protein Pept Sci 3, 231-238.
    61. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., and Li, Y. (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences, Nucleic Acids Res 32, e98.
    62. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal Biochem 150, 76-85.
    63. Payne, J. W. (1973) Polymerization of proteins with glutaraldehyde. Soluble molecular-weight markers, Biochem J 135, 867-873.
    64. Mischke, R., Kleemann, R., Brunner, H., and Bernhagen, J. (1998) Cross-linking and mutational analysis of the oligomerization state of the cytokine macrophage migration inhibitory factor (MIF), FEBS Lett 427, 85-90.
    65. Habeeb, A. J., and Hiramoto, R. (1968) Reaction of proteins with glutaraldehyde, Arch Biochem Biophys 126, 16-26.
    66. Richards, F. M., and Knowles, J. R. (1968) Glutaraldehyde as a protein cross-linkage reagent, J Mol Biol 37, 231-233.
    67. Korn, A. H., Feairheller, S. H., and Filachione, E. M. (1972) Glutaraldehyde: nature of the reagent, J Mol Biol 65, 525-529.
    68. Begg, G. E., and Speicher, D. W. (1999) Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines, J Biomol Tech 10, 17-20.
    69. Ellman, G. L. (1959) Tissue sulfhydryl groups, Arch Biochem Biophys 82, 70-77.
    70. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983) Reassessment of Ellman's reagent, Methods Enzymol 91, 49-60.
    71. Schagger, H. (2006) Tricine-SDS-PAGE, Nat Protoc 1, 16-22.
    72. Barrett, A. J. (1980) Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates, Biochem J 187, 909-912.
    73. Barrett, A. J., and Kirschke, H. (1981) Cathepsin B, Cathepsin H, and cathepsin L, Methods Enzymol 80 Pt C, 535-561.
    74. Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M., and Hanada, K. (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L, Biochem J 201, 189-198.
    75. Dixon, M. (1953) The determination of enzyme inhibitor constants, Biochem J 55, 170-171.
    76. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Comparative protein structure modeling of genes and genomes, Annu Rev Biophys Biomol Struct 29, 291-325.
    77. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints, J Mol Biol 234, 779-815.
    78. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992) Stereochemical quality of protein structure coordinates, Proteins 12, 345-364.
    79. Chen, R., Li, L., and Weng, Z. (2003) ZDOCK: an initial-stage protein-docking algorithm, Proteins 52, 80-87.
    80. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. (2005) PatchDock and SymmDock: servers for rigid and symmetric docking, Nucleic Acids Res 33, W363-367.
    81. Smith, G. R., and Sternberg, M. J. (2002) Prediction of protein-protein interactions by docking methods, Curr Opin Struct Biol 12, 28-35.
    82. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques, Proc Natl Acad Sci U S A 89, 2195-2199.
    83. Vernet, T., Berti, P. J., de Montigny, C., Musil, R., Tessier, D. C., Menard, R., Magny, M. C., Storer, A. C., and Thomas, D. Y. (1995) Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing, J Biol Chem 270, 10838-10846.
    84. Karrer, K. M., Peiffer, S. L., and DiTomas, M. E. (1993) Two distinct gene subfamilies within the family of cysteine protease genes, Proc Natl Acad Sci U S A 90, 3063-3067.
    85. McIntyre, G. F., and Erickson, A. H. (1991) Procathepsins L and D are membrane-bound in acidic microsomal vesicles, J Biol Chem 266, 15438-15445.
    86. McIntyre, G. F., Godbold, G. D., and Erickson, A. H. (1994) The pH-dependent membrane association of procathepsin L is mediated by a 9-residue sequence within the propeptide, J Biol Chem 269, 567-572.
    87. Wiederanders, B., Kaulmann, G., and Schilling, K. (2003) Functions of propeptide parts in cysteine proteases, Curr Protein Pept Sci 4, 309-326.
    88. Bulaj, G., Kortemme, T., and Goldenberg, D. P. (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides, Biochemistry 37, 8965-8972.
    89. Song, M. C., and Scheraga, H. A. (2000) Formation of native structure by intermolecular thiol-disulfide exchange reactions without oxidants in the folding of bovine pancreatic ribonuclease A, FEBS Lett 471, 177-181.
    90. Bajaj, K., Chakshusmathi, G., Bachhawat-Sikder, K., Surolia, A., and Varadarajan, R. (2004) Thermodynamic characterization of monomeric and dimeric forms of CcdB (controller of cell division or death B protein), Biochem J 380, 409-417.
    91. Lloyd, J. B., and Mason, R. W. (1996) Biology of the lysosome, Springer.
    92. Abrahamson, M. (1994) Cystatins, Methods Enzymol 244, 685-700.
    93. Tsai, C. Y., and Juang, R. H. (2001) Biotechnology Core Techniques, 2005 ed., National Taiwan University, Taipei, Taiwan
    94. Dash, P. K., Blum, S., and Moore, A. N. (2000) Caspase activity plays an essential role in long-term memory, NeuroReport 11, 2811-2816.
    95. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., and Olsen, B. R. (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L, Proc Natl Acad Sci U S A 99, 7883-7888.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE