簡易檢索 / 詳目顯示

研究生: 陳盈諭
Chen, Yin-Yu
論文名稱: 不同意報酬退化情況之研究與指派賽局中非退化的不同意報酬之研究
The Researches of Degenerated Disagreement Payoff and Non-Degenerated Disagreement Payoff in Assignment Game
指導教授: 周嗣文
Chou, Szu-Wen
口試委員: 梁孟玉
潘萬祥
吳震台
余朝恩
學位類別: 博士
Doctor
系所名稱: 科技管理學院 - 經濟學系
Department of Economics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 132
中文關鍵詞: 不同意報酬議價理論指派賽局
外文關鍵詞: disagreement payoff, bargaining problem, assignment game
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同意報酬在議價理論理裡面一直是很重要的概念,許多文獻也試圖去探究一個市場裡的每一個廠商(玩家)的不同意報酬是如何被決定出來的。本篇論文Osborne和Rubinstein的議價模型延伸成二對二(兩個買家與兩個賣家)的情況,而在本篇論文中將証明我們的模型能夠解出正的不同意報酬。

    本文接著討論指派賽局中可能會產生退化的不同意報酬的現象,即是所有的廠商(玩家)的不同意報酬均為零的情況。本文中提出許多例子都指出指派賽局的解集合(Core)中,經常會有所有買家的分配為零;或是所有賣家的分配為零的情況。本篇論文的其中一個目標即是試圖排除這些不合理的分配,因些產生正的不同意報酬。


    The concept of disagreement payoff is very important in bargaining problem. Many literatures attempt to study how to determine bargainer's disagreement payoffs in a market. Szu-Wen Chou and Yang's theory shows that propoer (positive) disagreement payoffs generally can not be supported as a result of stable matching. In this paper, we extend Osborne and Rubinstein's bargaining model into 2 by 2 (two buyers and two sellers) case. We show that our model can be solved out a series of positive disagreement payoff.
    The purposes of this paper are to refine the core of the assignment game provided by Shapely and Shubik (1972) and to find a non-degenerated system of disagreement payoff. There are some examples provided in this paper explaining that such payoffs are usually stipulated to be zero-payoff for many buyers and sellers. It is difficult to find a non-degenerated system of disagreement payoffs as a general equilibrium. One goal of this paper is to contend with the difficulty by refining the core of Shapely and Shubik (1972).

    Endogeneous Disagreement Payoff with Alternating-Offers Bargaining 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Literature Review . . . . . . . . . . . . . . . . . . . 9 1.2 Infinite Horizon Game in 2 by 2 Case . . . . . . . . . . 10 1.2.1 The Bargaining Procedure . . . . . . . . . . . . . . . 11 1.2.2 Maximize Utility . . . . . . . . . . . . . . . . . . . 13 1.2.3 Stationary Strategy . . . . . . . . . . . . . . . . . 15 1.2.4 Accepting Constraints . . . . . . . . . . . . . . . . . 17 1.3 Subgame Perfect Equilibrium . . . . . . . . . . . . . . . 19 1.3.1 Solution in the case with w>x>y>z . . . . . . . . . . . 31 1.3.2 Solution in the case with w>y>x>z . . . . . . . . . . . 46 1.3.3 Solution in the case with w>y>z>x and M1 is The Optimal Matching . . . . . . . . . . . . . . . . . . . . . . . 61 1.3.4 Solution in the case with w>y>z>x and M2 is The Optimal Matching . . . . . . . . . . . . . . . . . . . . . . . 71 1.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 75 2 The Assignment Game: Re…ned Core 77 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 77 2.1.1 Literature Review . . . . . . . . . . . . . . . . . . . 80 2.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . 82 2.2 The Assingnment Game . . . . . . . . . . . . . . . . . . . 83 2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.4.1 One-step Deviation . . . . . . . . . . . . . . . . . . . 87 2.5 Two-setp Deviation . . . . . . . . . . . . . . . . . . . . 91 2.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . 91 2.5.2 Two-step Deviation . . . . . . . . . . . . . . . . . . . 93 2.6 N-step Refined Core and Infinite-step Refined Core . . . . 96 2.7 What is infinite-step refined core equal to? . . . . . . . 98 2.7.1 One-step Refined Core Versus Two-step Refined Core . . . 99 2.7.2 Infinite-step refined core . . . . . . . . . . . . . . . 101 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 103 A Lemma 105 B The Proof of Solution3 111 C The Proof Solution5 115 D The proof of Proposition10 121 E The proof of Proposition16 123 F The proof of Lemma17 125 G The proof of Theorem18 127 H The proof of Corollary19 129

    Acemoglu, Daron and Robert Shimer (1999). "Holdups and efficiency with search frictions", International Economic Review 40, 827---849
    Coase, Ronald, (1937), "The Nature of the Firm," Economica, IV, 386-405.
    Cramton, P., Gibbons, R., and Klemperer, P. (1987), "Dissolving a Partnership Efficiently." Econometrica, Vol. 55, pp. 615-632.
    Chiu YS. (1998). "Noncooperative bargaining, hostages and optimal asset ownership." American Economic Review 88: 882--901.
    Cole, H., G. Mailath and A. Postlewaite. (2001). "Efficient Non Contractible Investments in Large Economies," Journal of Economic Theory, 101, 333-373
    De Meza, David, and Ben Lockwood, (1998). "Does Asset Ownership Always Motivate Managers? Outside Options and The Property Rights Theory of the Firm," Quarterly Journal of Economics, CXIII , 361-386.
    Felli, L. and K. Roberts. (2002). "Does Competition Solve the Hold-Up Problem?" CEPR Discussion Paper 3535.
    Grossman H. and Hart O. (1986), "The Costs and Benefits of Ownership: A Theory of Vertical and Lateral Integration." Journal of Political Economy, 94, 691-719.
    Hart O. and Moore J. (1990), "Property Rights and the Nature of the Firm." Journal of Political Economy, 98, 1119-58.
    Hart, Oliver, Andrei Shleifer, and Robert Vishny, (1997) "The Proper Role for Government: Theory and an Application to Prisons," Quarterly Journal of Economics, CXII,1127-1162.
    Nunz, M. and C. Rafels (1998), "On Extreme Points of the Core and Reduced Games", Annals of Operations Research, 84, 121-133.
    Rochford S. (1984), "Symmetrically Pairwise-Bargained Allocations in an Assignment Market," Journal of Economic Theory, 34, 262-281.
    Roth, A.E. and M. Sotomayor (1990), "Two-sided Matching, Econometrica Society Monographs", 18. Cambridge University Press.
    Shapley, L.S. and M. Shubik (1972), "The Assignment Game I: The Core", International Journal of Game Theory, 1, 111-130.
    Shapley, L.S. (1971), "Cores of Convex Games", International Journal of Game Theory, 1, 11-26.
    Shapiro, C. and Stiglitz, J. (1984), "Equilibrium unemployment as a worker discipline device," American Economic Review, June 1984
    Schubik M. Game Theory in the Social Science, the MIT Press, Cambridge, Mass., 1982.

    QR CODE