研究生: |
黃咨元 Huang, Tzu-Yuan |
---|---|
論文名稱: |
利用光激發薄膜狀表面氮化銦與金字塔狀表面氮化銦產生兆赫輻射 Optically-excited THz emission from InN thin films and pyramids |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
張存續
CHANG, TSUN-HSU 嚴大任 YEN, TA-JEN 吳小華 WU, XIAO-HUA 高宗聖 KAO, TSUNG-SHENG |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 兆赫波 、氮化銦 、半導體 、金字塔 、薄膜 |
外文關鍵詞: | TeraHertz, InN, Semiconductor, Pyramids, Film |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用時域兆赫及光譜儀技術(THz-TDS)研究氮化銦 (InN) 材料的兆赫輻射發射機制,如漂移電流、擴散電流造成之瞬時電流和非線性光整流效應,我們也分析了其在兆赫波段的介電常數和電導率。
本文中探討有機金屬化學氣象沉積法製成之氮化銦薄膜及金字塔結構之光激發兆赫輻射中的瞬時電流效應可以忽略,藉由結合菲涅耳方程式、考慮載子吸收和非線性效應 (光整流) 的貢獻,我們可以很良好地解釋太赫茲電場的泵浦入射角、泵浦極化角和泵浦功率的趨勢關係。在實驗結果中,我們發現薄膜狀表面氮化銦和金字塔狀表面氮化銦的差異具有以下現象。第一,來自金字塔狀表面氮化銦表面的太赫茲輻射在低頻範圍內具有較優良的表現。第二,在泵浦偏振趨勢分析方面,薄膜狀表面氮化銦在偏振角為900(TE波)時具有最低的太赫茲產生效率,但金字塔狀表面氮化銦的趨勢則相反。第三,在泵浦功率趨勢分析方面,我們發現金字塔狀表面氮化銦發射之兆赫輻射更容易達到飽和值。
在優化了氮化銦表面的太赫茲輻射功率後,可以獲得最佳泵浦入射角~550,最佳泵浦極化角對薄膜狀樣品~00、金字塔狀樣品~900,其轉換效率可達到50左右的訊噪比。
THz emission mechanism from Indium Nitride (InN) such as drift current, diffusion current caused photocurrent surge and optical rectification effect is investigated by the setup of Time-Domain Spectroscopy in THz range (THz-TDS). We also analyzed the complex dielectric constant and complex conductivity of InN in THz radiation range.
In this thesis, photocurrent surge effect is negligible when we consider THz radiation from optically excited Film surfaced InN and pyramids surfaced InN which is grown by metalorganic chemical vaper deposition (MOCVD) method. By combining the Fresnel equation, free carrier absorption and nonlinear effect (Optical rectification), we can well explain pump incident angle-, pump polarization angle- and pump power- dependence of THz electric field. In the experimental results, we found the difference between film surfaced InN and pyramids surfaced InN has the following phenomena. First, the THz radiation from pyramids surfaced InN has higher performance at the low frequency range. Second, in the pump polarization dependence, the film surfaced InN has the lowest THz generation efficiency with polarization angle at 900 (TE-wave) but the trend of pyramids surfaced InN is opposite. Third, in the pump power dependence, the THz emission from pyramids surfaced InN is easier to get saturated.
After optimizing the power of THz radiation from InN surface, we can get the optimal pump incident angle ~ 550, optimal pump polarization angle ~00 (for film sample) ~900 (for pyramids sample) and the transfer efficiency can achieve the signal to noise ratio around 50.
[1] G. J. Wilmink and J. E. Grundt, "Invited review article: current state of research on biological effects of terahertz radiation," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, pp. 1074-1122, 2011.
[2] A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, and e. al., "Terahertz optical rectification from <110> zincblende crystals," Applied Physics Letters, vol. 64, pp. 1324-1326, 1994.
[3] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Applied Physics Letters, vol. 56, pp. 1011-1013, 1990.
[4] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, et al., "Terahertz semiconductor heterostructure laser," Nature, vol. 417, pp. 156-159, 2002.
[5] Q. Wu and X. C. Zhang, "Free-space electro-optic sampling of terahertz beams," Applied Physics Letters, vol. 67, pp. 3523-3525, 1995.
[6] D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, "Regeneratively initiated self-mode-locked Ti:sapphire laser," Optics Letters, vol. 16, pp. 1762-1764, 1991.
[7] J. V. Rudd, J. L. Johnson, and D. M. Mittleman, "Cross-polarized angular emission patterns from lens-coupled terahertz antennas," Journal of the Optical Society of America B, vol. 18, pp. 1524-1533, 2001.
[8] C.-S. Yang, M.-H. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, C.-H. Shen, et al., "Non-Drude Behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy," Quantum Electronics, IEEE Journal of, vol. 49, pp. 677-690, 2013.
[9] K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Physical Review B, vol. 73, p. 155330, 2006.
[10] R. Ascázubi, I. Wilke, K. Denniston, H. Lu, and W. J. Schaff, "Terahertz emission by InN," Applied physics letters, vol. 84, pp. 4810-4812, 2004.
[11] G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, et al., "Terahertz emission from lateral photo-Dember currents," Optics express, vol. 18, pp. 4939-4947, 2010.
[12] J. Wu, W. Walukiewicz, K. Yu, J. Ager Iii, E. Haller, H. Lu, et al., "Unusual properties of the fundamental band gap of InN," Applied Physics Letters, vol. 80, pp. 3967-3969, 2002.
[13] V. Cimalla, B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, et al., "High efficient terahertz emission from InN surfaces," physica status solidi (b), vol. 244, pp. 1829-1833, 2007.
[14] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, et al., "Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect," Applied physics letters, vol. 73, pp. 1691-1693, 1998.
[15] Q. Wu and X.-C. Zhang, "Free-space electro-optics sampling of mid-infrared pulses," Applied physics letters, vol. 71, pp. 1285-1286, 1997.
[16] M. J. Golay, "A Pneumatic Infra‐Red Detector," Review of Scientific Instruments, vol. 18, pp. 357-362, 1947.
[17] Y.-S. Lee, Principles of Terahertz Science and Technology: Springer, 2009.
[18] L. Yun-Shik, "Principles of terahertz science and technology," NY: Springer, 2008.
[19] D.-x. Zhou, E. P. Parrott, D. J. Paul, and J. A. Zeitler, "Determination of complex refractive index of thin metal films from terahertz time-domain spectroscopy," Journal of Applied Physics, vol. 104, p. 053110, 2008.
[20] K. Fukunaga and M. Picollo, "Terahertz spectroscopy applied to the analysis of artists’ materials," Applied Physics A, vol. 100, pp. 591-597, 2010.
[21] M. Tonouchi, "Cutting-edge terahertz technology," Nature photonics, vol. 1, pp. 97-105, 2007.
[22] B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature materials, vol. 1, pp. 26-33, 2002.
[23] G. Beziuk, P. Jarzab, K. Nowak, E. Plinski, M. Walczakowski, and J. Witkowski, "Dielectric properties of the FR-4 substrates in the THz frequency range," in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012 37th International Conference on, 2012, pp. 1-2.
[24] H. Ahn, C.-L. Pan, and S. Gwo, "Terahertz emission and spectroscopy on InN epilayer and nanostructure," in SPIE OPTO: Integrated Optoelectronic Devices, 2009, pp. 72160T-72160T-11.
[25] M. B. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Physical Review B, vol. 65, p. 165301, 2002.
[26] G. L. Dakovski, B. Kubera, and J. Shan, "Localized terahertz generation via optical rectification in ZnTe," JOSA B, vol. 22, pp. 1667-1670, 2005.
[27] G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, C. S. Gallinat, G. Koblmuller, et al., "Excitation wavelength dependence of terahertz emission from InN and InAs," Applied physics letters, vol. 89, 2006.
[28] H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, and C.-L. Pan, "Terahertz emission from vertically aligned InN nanorod arrays," Applied Physics Letters, vol. 91, p. 132108, 2007.
[29] G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, et al., "Efficient terahertz generation within InGaN/GaN multiple quantum wells," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 48-53, 2011.
[30] A. Arlauskas and A. Krotkus, "THz excitation spectra of AIIIBV semiconductors," Semiconductor Science and Technology, vol. 27, p. 115015, 2012.
[31] D. A. Neamen, Semiconductor physics and devices: McGraw-Hill Higher Education, 2003.
[32] R. F. Pierret, Semiconductor device fundamentals: Pearson Education India, 1996.
[33] S. M. Sze and S. Devices, "Physics and Technology," 1985.
[34] C. Hu, Modern semiconductor devices for integrated circuits: Prentice Hall, 2010.
[35] Y.-S. Lee, Principles of terahertz science and technology vol. 170: Springer Science & Business Media, 2009.
[36] R. W. Boyd, "Nonlinear optics," in Handbook of Laser Technology and Applications (Three-Volume Set), ed: Taylor & Francis, 2003, pp. 161-183.
[37] P. N. Butcher and D. Cotter, The elements of nonlinear optics vol. 9: Cambridge university press, 1991.
[38] X.-l. Yang and S.-w. Xie, "Expression of third-order effective nonlinear susceptibility for third-harmonic generation in crystals," Applied optics, vol. 34, pp. 6130-6135, 1995.
[39] I. Wilke, R. Ascazubi, H. Lu, and W. J. Schaff, "Terahertz emission from silicon and magnesium doped indium nitride," Applied Physics Letters, vol. 93, p. 221113, 2008.
[40] X. Wang, G. Zhao, Q. Zhang, Y. Ishitani, A. Yoshikawa, and B. Shen, "Effect of Mg doping on enhancement of terahertz emission from InN with different lattice polarities," Applied Physics Letters, vol. 96, p. 061907, 2010.
[41] C. Rauch, Ö. Tuna, C. Giesen, M. Heuken, and F. Tuomisto, "Point defect evolution in low‐temperature MOCVD growth of InN," physica status solidi (a), vol. 209, pp. 87-90, 2012.
[42] D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, vol. 7, pp. 2006-2015, 1990.
[43] T.-R. Tsai, S.-J. Chen, C.-F. Chang, S.-H. Hsu, T.-Y. Lin, and C.-C. Chi, "Terahertz response of GaN thin films," Optics express, vol. 14, pp. 4898-4907, 2006.
[44] F. He-Nan, Z. Rong, L. Bin, L. Hai, D. Jian-Ping, X. Zi-Li, et al., "Dielectric properties of GaN in THz frequencies," Chinese Physics Letters, vol. 27, p. 017802, 2010.
[45] H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, and C.-L. Pan, "Terahertz spectroscopic study of vertically aligned InN nanorods," Applied physics letters, vol. 91, p. 163105, 2007.
[46] V. Y. Davydov, V. Emtsev, I. Goncharuk, A. Smirnov, V. Petrikov, V. Mamutin, et al., "Experimental and theoretical studies of phonons in hexagonal InN," Applied physics letters, vol. 75, pp. 3297-3299, 1999.
[47] G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann, C. Thomsen, D. As, et al., "Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations," Applied Physics Letters, vol. 76, pp. 2122-2124, 2000.
[48] M. Kuball, J. Pomeroy, M. Wintrebert-Fouquet, K. Butcher, H. Lu, and W. Schaff, "A Raman spectroscopy study of InN," Journal of crystal growth, vol. 269, pp. 59-65, 2004.
[49] Y. Iwahashi, H. Yaguchi, A. Nishimoto, M. Orihara, Y. Hijikata, and S. Yoshida, "RF‐MBE growth of cubic InN films on MgO (001) substrates," physica status solidi (c), vol. 3, pp. 1515-1518, 2006.
[50] N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," Journal of applied physics, vol. 84, pp. 654-656, 1998.
[51] P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," Journal of applied physics, vol. 91, pp. 5533-5537, 2002.
[52] E. Brown, K. McIntosh, K. Nichols, and C. Dennis, "Photomixing up to 3.8 THz in low‐temperature‐grown GaAs," Applied Physics Letters, vol. 66, pp. 285-287, 1995.
[53] G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, M. Jamil, and I. T. Ferguson, "Mechanism for THz generation from InN micropyramid emitters," Journal of Applied Physics, vol. 109, p. 093111, 2011.
[54] X. Mu, Y. J. Ding, K. Wang, D. Jena, and Y. B. Zotova, "Resonant terahertz generation from InN thin films," Optics letters, vol. 32, pp. 1423-1425, 2007.
[55] G. Xu, Y. J. Ding, H. Zhao, G. Liu, M. Jamil, N. Tansu, et al., "THz generation from InN films due to destructive interference between optical rectification and photocurrent surge," Semiconductor Science and Technology, vol. 25, p. 015004, 2009.
[56] V. Apostolopoulos and M. Barnes, "THz emitters based on the photo-Dember effect," Journal of Physics D: Applied Physics, vol. 47, p. 374002, 2014.
[57] J. Wallauer, C. Grumber, V. Polyakov, R. Iannucci, V. Cimalla, O. Ambacher, et al., "Large area InN terahertz emitters based on the lateral photo-Dember effect," Applied Physics Letters, vol. 107, p. 111102, 2015.
[58] B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, et al., "InN as THz emitter excited at 1060 nm and 800 nm," in Photonics Europe, 2006, pp. 61940I-61940I-9.
[59] P. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors," Applied physics letters, vol. 73, pp. 3049-3051, 1998.
[60] M. E. Barnes, S. A. Berry, P. Gow, D. McBryde, G. J. Daniell, H. E. Beere, et al., "Investigation of the role of the lateral photo-Dember effect in the generation of terahertz radiation using a metallic mask on a semiconductor," Optics express, vol. 21, pp. 16263-16272, 2013.
[61] H. Dember, "Über eine photoelektronische Kraft in Kupferoxydul-Kristallen," Z. Phys., vol. 32, p. 554, 1931.