簡易檢索 / 詳目顯示

研究生: 余誌傑
Chih-Chieh Yu
論文名稱: 超臨界流體下甲苯及丙烯烷化反應之研究
Study on the Alkylation of Toluene with Propylene on Supercritical Fluids
指導教授: 談駿嵩
Chung-Sung Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 116
中文關鍵詞: 烷化甲苯丙烯ZSM-5硫化氧化鋯對異丙基甲苯
外文關鍵詞: Alkylation, Toluene, Propylene, ZSM-5, Sulfate Zirconia, p-Cymene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    對異丙基甲苯(p-Cymene)在工業上具有重要的用途,它可以用來生產殺菌劑、殺蟲劑、香料等物質。製得對異丙基甲苯的方法之一是經由甲苯與丙烯在以經CLD(Chemical Liquid Deposition)方法修飾過的沸石上之烷化反應。為了在工業界使用,通常會將粉末(Powder)觸媒加入黏著劑(Binder)使其變成具有一定硬度之顆粒(Pellet)觸媒,以避免在連續式操作時觸媒被帶出反應器及減少壓力降。而這些黏著劑通常具有酸性點,此酸性點會造成丙烯之裂解及產生異構化反應。為了減少丙烯裂解的情況及避免異構化反應的產生,本研究以利用CLD方法修飾過的不含黏著劑之ZSM-5觸媒顆粒做為催化甲苯與丙烯之烷化反應,並且使用超臨界二氧化碳當作載體,藉由超臨界二氧化碳優於氣體的溶解力與優於液體的輸送性質,能有效地溶解焦炭的前趨物,迅速將其帶走,以延長觸媒的壽命;且因其為均一相,可降低質傳阻力,使整體反應速率提高。實驗結果顯示當操作條件為修飾劑TEOS量為1.6 (ml of TEOS)/(g of catalyst)、壓力為1700 psi、溫度為250 ℃、甲苯/丙烯莫耳比為7.65、甲苯WHSV為4.56 (g of toluene/h)/(g of toluene)時,可得到最高的p-Cymene產率(約58 %)及p-Cymene選擇率(約98 %)和最少的丙烯裂解(約13 %)。
    為了再有效地降低丙烯裂解的情況,本計畫同時亦利用以矽沸石(Silicalite)包覆經硫酸化(Sulfated)過的氧化鋯(S-ZrO2)所形成之核殼結構做為觸媒,於超臨界二氧化碳中進行甲苯及丙烯之烷化反應以生成對異丙基甲苯。當硫酸化劑為每克ZrO2加入1.5 ml 1 N之硫酸時,可得更高的Cymene產率(約69 %)和更少的丙烯裂解(約11 %),以達到了減少丙烯裂解的情況,而p-Cymene選擇率約為32 %。當以奈米及次微米矽沸石包覆S-ZrO2觸媒時,但不論使用何種比例的奈米矽沸石皆無法提升p-Cymene選擇率。雖然使用次微米矽沸石時可將p-Cymene選擇率從32 %略微提升至45 %,但距以CLD方法修飾過之ZSM-5觸媒還有一段距離(p-Cymene選擇率約98 %)。原因可能是外表層之矽沸石無法形成一完美連續的薄膜,故有Pinhole的存在,使得三種Cymene異構物均會從Pinhole流出而無法達到分子篩的作用。因此仍需對矽沸石之包覆方法加以探討及改進以提升p-Cymeme的選擇率。


    目錄 頁次 摘要 Ⅰ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 壹、緒論 1 貳、文獻回顧 5 2-1 在超臨界流體環境下進行化學反應之相關文獻 5 2-1-1 在超臨界流體環境下進行化學反應之優點 5 2-1-2 在超臨界流體環境下進行化學反應之應用 6 2-2 觸媒相關文獻 11 2-2-1 ZSM-5觸媒相關文獻 11 2-2-1-1 ZSM-5觸媒之簡介及特性 12 2-2-1-2 ZSM-5觸媒應用之概況及其優點 13 2-2-1-3 改良ZSM-5觸媒的目的、方法及應用 14 2-2-2 S-ZrO2觸媒相關文獻 20 2-2-2-1 S-ZrO2觸媒之製備及特性 21 2-2-2-2 S-ZrO2觸媒之應用 23 參、實驗部份 27 3-1 實驗裝置與步驟 27 3-1-1反應器及加熱爐 27 3-1-2 進料控制設備 30 3-1-3 實驗步驟 31 3-1-3-1 觸媒之製備 31 3-1-3-1-1 ZSM-5觸媒之修飾 31 3-1-3-1-2 S-ZrO2核殼觸媒之製備 32 3-1-3-2 觸媒前處理(常壓操作) 33 3-1-3-3 固定床烷化反應(高壓操作) 35 3-1-3-4 產物分析 36 3-2 實驗儀器 37 3-3 實驗藥品 40 肆、實驗結果與討論 42 4-1 ZSM-5觸媒部分 43 4-1-1 去銨根(de-Amination)之鍛燒溫度 43 4-1-2 改質劑使用量之影響 49 4-1-3 壓力的影響 61 4-1-4 溫度的影響 68 4-1-5 甲苯/丙烯莫耳比的影響 76 4-1-6 甲苯WHSV的影響 82 4-2 S-ZrO2核殼觸媒部分 88 4-2-1 S-ZrO2觸媒不同硫酸量的影響 88 4-2-2 矽沸石之包覆的影響 94 4-2-2-1 奈米矽沸石的影響 94 4-2-2-2 次微米矽沸石的影響 104 伍、結論 109 陸、參考文獻 111 表目錄 頁次 表1-1 Cymene Process反應之流程 2 表1-2 異丙基甲苯異構物之物理性質 2 表2-1 以水蒸氣處理ZSM-5時,ZSM-5晶體架構上發生之反應 16 表4-1(a) 去銨根之鍛燒溫度的影響(第五小時數據) 44 表4-1(b) 去銨根之鍛燒溫度的影響 45 表4-1(b)(續) 去銨根之鍛燒溫度的影響 46 表4-2(a) 改質劑使用量之影響(第五小時數據) 51 表4-2(a)(續) 改質劑使用量之影響(第五小時數據) 52 表4-2(b) 改質劑使用量之影響 53 表4-2(b)(續) 改質劑使用量之影響 54 表4-3(a) Powder與Pellet之比較(第五小時數據) 57 表4-3(b) Powder與Pellet之比較 58 表4-4(a) 壓力的影響(第五小時數據) 63 表4-4(b) 壓力的影響 64 表4-4(b)(續) 壓力的影響 65 表4-5(a) 溫度影響(第五小時數據) 70 表4-5(a)(續) 溫度的影響(第五小時數據) 71 表4-5(b) 溫度的影響 72 表4-5(b)(續) 溫度的影響 73 表4-6(a) 甲苯/丙烯莫耳比的影響(第五小時數據) 77 表4-6(b) 甲苯/丙烯莫耳比的影響 78 表4-6(b)(續) 甲苯/丙烯莫耳比的影響 79 表4-7(a) 甲苯WHSV的影響(第五小時數據) 83 表4-7(b) 甲苯WHSV的影響 84 表4-7(b)(續) 甲苯WHSV的影響 85 表4-8(a) 使用S-ZrO2觸媒時不同硫酸量的影響(第一小時數據) 90 表4-8(a)(續) 使用S-ZrO2觸媒時不同硫酸量的影響(第一小時數據) 91 表4-8(b) 使用S-ZrO2觸媒時不同硫酸量的影響 92 表4-9(a) 奈米矽沸石包覆S-ZrO2時所獲得的實驗數據 (Powder)(第一小時數據) 96 表4-9(b) 奈米矽沸石包覆S-ZrO2時所獲得的實驗數據(Powder) 97 表4-10(a) 奈米矽沸石包覆S-ZrO2時所獲得的實驗數據 (Pellet)(第一小時數據) 100 表4-10(b) 奈米矽沸石包覆S-ZrO2時所獲得的實驗數據(Pellet) 101 表4-11(a) 有無次微米矽沸石包覆S-ZrO2時所獲的實驗數據 (Powder) (第一小時數據) 105 表4-11(b) 有無次微米矽沸石包覆S-ZrO2時所得的實驗數據(Powder) 106 圖目錄 頁次 圖2-1 以鎂含浸之觸媒及矽氣相植入法改良之觸媒反應性之比較 19 圖2-2 Acid Strengths of Liquid and Solid Superacid 20 圖3-1超臨界流體下甲苯及丙烯烷化反應之實驗裝置圖 28 圖3-2固定床反應器之構造 29 圖4-1(a)去銨根鍛燒溫度對Cymene產率及p-Cymen產率的影響 (第五小時數據) 47 圖4-1(b)去銨根鍛燒溫度對Propylene Loss及p-Cymen選擇率的影響 (第五小時數據) 48 圖4-2(a) 改質劑使用量對Cymene產率及p-Cymen產率的影響 (第五小時數據) 55 圖4-2(b) 改質劑使用量對Propylene Lossp-Cymen選擇率的影響 (第五小時數據) 56 圖4-3(a) Powder與Pelle對Cymene產率的影響 59 圖4-3(b) Powder與Pelle對p-Cymene產率的影響 59 圖4-3(c) Powder與Pelle對p-Cymene選擇率的影響 60 圖4-3(d) Powder與Pelle對Propylene Loss的影響 60 圖4-4(a) 壓力對Cymene產率及p-Cymene產率的影響(第五小時數據) 66 圖4-4(b) 壓力對Propylene Loss及p-Cymene選擇率的影響(第五小時數據) 67 圖4-5(a) 溫度對Cymene產率及p-Cymene產率的影響(第五小時數據) 74 圖4-5(b) 溫度對Propylene Loss及p-Cymene選擇率的影響(第五小時數據) 75 圖4-6(a) 甲苯/丙烯莫耳比對Cymene產率及p-Cymene產率的影響 (第五小時數據) 80 圖4-6(b) 甲苯/丙烯莫耳比對Propylene Loss及p-Cymene選擇率的影響 (第五小時數據) 81 圖4-7(a) 甲苯WHSV對Cymene產率及p-Cymene產率的影響 (第五小時數據) 86 圖4-7(b) 甲苯WHSV對Propylene Loss及p-Cymene選擇率的影響 (第五小時數據) 87 圖4-8(a) S-ZrO2觸媒含有不同硫酸量時Cymene產率對時間之關係圖 93 圖4-8(b) S-ZrO2觸媒含有不同硫酸量時下Propylene Loss對時間之關係圖 93 圖4-9(a) 奈米矽沸石包覆量對Cymene產率的影響(Powder) 98 圖4-9(b) 奈米矽沸石包覆量對p-Cymene產率的影響(Powder) 98 圖4-9(c) 奈米矽沸石包覆量對p-Cymene選擇率的影響(Powder) 99 圖4-9(d) 奈米矽沸石包覆量對Propylene Loss的影響(Powder) 99 圖4-10(a) 奈米矽沸石包覆量對Cymene產率的影響(Pellet) 102 圖4-10(b) 奈米矽沸石包覆量對p-Cymene產率的影響(Pellet) 102 圖4-10(c) 奈米矽沸石包覆量對p-Cymene選擇率的影響(Pellet) 103 圖4-10(d) 奈米矽沸石包覆量對Propylene Loss的影響(Pellet) 103 圖4-11(a) 有無次微米矽沸石包覆S-ZrO2對Cymene產率的影響(Powder) 107 圖4-11(b) 有無次微米矽沸石包覆S-ZrO2對p-Cymene產率的影響(Powder) 107 圖4-11(c) 有無次微米矽沸石包覆S-ZrO2對p-Cymene選擇率的影響(Powder) 108 圖4-11(d) 有無次微米矽沸石包覆S-ZrO2對Propylene Loss的影響(Powder) 108

    陸、參考文獻

    (1) 陳慎平, "甲苯及丙烯於ZSM-5觸媒上烷化反應之探討," 碩士論文,國立清華大學化學工程研究所(1995)。

    (2) Wang, S.; Tan, C. S. Alkylation of Toluene with Propylene to Produce Para-Cymene. J. Chin. Inst. Chem. Eng., 2001, 32, 319.

    (3) Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. Reactions at Supercritical Conditions: Applications and Fundamentals. AIChE J., 1995, 41, 1723.

    (4) Baiker, A. Supercritical Fluids in Heterogeneous Catalysis. Chem. Rev., 1999, 99, 453.

    (5) Lang, X.; Akgerman, A.; Bukur, D. B. Steady State Fisher-Tropsch Synthesis in Supercritical Propane. Ind. Eng. Chem. Res., 1995, 34, 72.

    (6) Fan, L.; Nakamura, I.; Ishida, S.; Fujimoto, K. Supercritical-Phase Alkylation Reaction on Solid Acid Catalysts: Mechanistic Study and Catalyst Development. Ind. Eng. Chem. Res., 1997, 36, 1458.

    (7) Chandler, K.; Deng, F.; Dillow, A. K.; Liotta, C. L.; Eckert, C. A. Alkylation Reactions in Near-Critical Water in the Absence of Acid Catalysts. Ind. Eng. Chem. Res., 1997, 365, 5175.

    (8) Hitzler, M. G.; Poliakoff, M. Continuous Hydrogenation of Organic Compounds in Supercritical Fluids. Chem. Commun., 1997, 1667.
    (9) Hitzler, M. G.; Smail, F. R.; Ross, S. K.; Poliakoff, M. Friedel-Crafts Alkylation in Supercritical Fluids: Continuous, Selective and Clean. Chem. Commun., 1998, 359.

    (10) Clark, C. M.; Subramaniam, B. Extended Alkylate Production Activity during Fixed-Bed Supercritical 1-Butene/Isobutane Alkylation on Solid Acid Catalysts Using Carbon Dioxide as a Diluent. Ind. Eng. Chem. Res., 1998, 37, 1243.

    (11) Gao, Y.; Shi, Y. F.; Zhu, Z. N.; Yuan, W. K. Coking Mechanism of Zeolite for Supercritical Fluid Alkylation of Benzene. High Pressure Chem. Eng., 1996, 151.

    (12) Kuo, T.; Tan, C. S. Alkylation of Toluene with Propylene in Supercritical Carbon Dioxide over Chemical Liquid Deposition HZSM-5 Pellet. Ind. Eng. Chem. Res., 2001, 40, 4724.

    (13) Argauer, R. J.; Landolt, G. R. U. S. Patent 1972, 3720886.

    (14) Vedrine, J. C.; Auroux, A.; Bolis, V.; Dejaifve, P.; Naccache, C.; Wierchowski, P.; Derouane, E. G.; Nagy, J. B.; Gilson, J. P.; Van Hoff, J. H. C.; Van Den Berg, J. P.; Wolthuizen, J. P. Infrared, Microcalorimetric, and Electron Spin Resonance Investigations of the Acidic Properties of the H-ZSM-5 Zeolite. J. Catal., 1979, 59, 248.

    (15) Chen, N. Y.; Yan, T. Y. M2 Forming-A Process for Aromatization of Light Hydrocarbons. Ind. Eng. Chem. Res., 1986, 25, 151.

    (16) Penchev, V.; Minchev, C.; Kanazirev, V.; Pencheva, O.; Pencheva, N.; Kosova, L.; Lechert, H.; Kacirek, H. Thermochemical and Acidic Properties of the Zeolites Offretite, Omega and ZSM-5. Zeolite, 1983, 3, 249.

    (17) Dwyer, F. G.; Lewis, P. J.; Schneider, F. H. Efficient, Nonpolluting Ethylbenzene Process. Chem. Eng., 1976, 83, 90.

    (18) Olson, D. H.; Haag, W. O. Catalytic Materials Relationship between Structure and Reactivity. ACS, D. C., 1984, 275.

    (19) 陳美惠, "以改良型ZSM-5 觸媒合成對二烷基苯," 碩士論文國立清華大學化學工程研究所(1986)。

    (20) Chang, C. D.; Lang, W. H.; Silvestri, A. J. Synthesis Gas Aromatic Hydrocarbons. J. Catal., 1979, 56, 268.

    (21) Chen, N. Y. U. S. Patent 1973, 3729409.

    (22) Chang C. D. Hydrocarbons from Methanol. Catal. Rev. Sci. Eng., 1983, 25, 1.

    (23) Chen, N. Y.; Gorring, H. R.; Ireland, H. R.; Stein, T. R. Oil Gas J., 1977, 75, 165.

    (24) Young, L. B.; Butter, S. A.; Kaeding, W. W. Shape Selective Reaction with Zeolite Catalysts, Ⅲ. Selectivity in Xylene Isomerization, Toluene-Methonal Alkylation, and Toluene Disproportionation over ZSM-5 Zeolite Catalysts. J. Catal., 1982, 76, 418.
    (25) 李秉傑, "以不飽和二碳烴與單環芳香烴的烷化反應探討ZSM-5觸媒之特性," 博士論文, 國立清華大學化學工程研究所(1985)

    (26) Kaeding, W. W.; Chu, C.; Young, L. B.; Weinstein, B.; Butter, S. A. Selective Alkylation of Toluene with Methonal to Produce para-Xylene. J. Catal., 1981, 67, 159.

    (27) Kaeding, W. W.; Young, L. B.; Chu, C. C. Shape-Selective Reactions with Catalysts, Ⅳ. Alkylation of Toluene with Ethylene to Produce p-Ethyltoluene. J. Catal., 1984, 89, 267.

    (28) Lago, R. M.; Haag, W. O.; Mikovsky, R. J.; Olsin, D. H.; Hellring, S. D. Nato Asi Series: New Developments in Zeolite Sci. Tech., 1981, 667.

    (29) Wang, J.; Ay, C. L.; Lee, B.J.; Chen, M. H. Para-selectivity of Dialkylbenzenes over Modified HZSM-5 by Vapor Phase Deposition of Silica. Appl. Catal., 1989, 54, 257.

    (30) Niwa, M.; Itoh, H.; Kato, S.; Hattori, T.; Murakami, Y. Modification of H-Mordenite by a Vapor-phase Deposition Method. J. Chem. Soc., Chem. Commun., 1982, 15, 819.

    (31) Niwa, M.; Kawashima, Y.; Murakami, Y. A Shape-Selective Platinum-loaded Mordenite Catalyst for the Hydrocracking of Paraffins by the Chemical Vapour Deposition of Silicon Alkoxide. J. Chem. Soc., Faraday Trans1., 1985, 81, 2757.

    (32) Yue, Y. H.; Tang, Y.; Liu, Y.; Gao, Z. Chemical Liquid Deposition Zeolites with Controlled Pore-Opening Size and Shape-Selective Separation of Isomers. Ind. Eng. Chem. Res., 1996, 35, 430.

    (33) Yadav, G. D. and Nair, J. J. Sulfate zirconia and its modified versions as promising catalyst for industrial process. Microporous and Mesoporous Materials, 1999, 33, 1.

    (34) Parera, J. M. Promotion of Zirconia Acidity by Addtiion of Sulfate Ion. Catal. Today, 1992, 15, 481.

    (35) Chen, F. R.; Coudurier, G.; Joly, J.; Vedrine, J. C. Superacid and Catalytic Properties of Sulfated Zirconia. J. Catal., 1993, 143, 616.

    (36) Morterra, C.; Cerrato, G.; Bolis V. Lewis and Bronsted acidity at the surface of sulfate-doped ZrO2 catalyst. Catal. Today, 1993, 17, 505.

    (37) Morterra, C.; Cerrato, G..; Pinna, F.; Signoretto, M.; Strukul G. On the Acid-Catalyzed Isomerization of Light Paraffins overs a ZrO2/SO4 System : The Effect of Hydration. J. Catal., 1994, 149, 181.

    (38) Stichert, W.; Schuth, F.; Kuba S.; Knozinger, H. Monoclinic and Tatragonal High Surface Area Sulfated Zirconias in Butane Isomerization : CO Adsorption and Catalytic Results. J. Catal., 2001, 198, 277.

    (39) Vera, C. R.; Yori, J. C.; Pieck, C. L.; Irusta, S.; Parera, J. M. Opposite Activation Conditions of Acid and Metal Function pf Pt/SO42—ZrO2 Catalyst. Appl. Catal. A: Gen., 2003, 240. 161.

    (40) Vadav, G. D. and Pujari, A. A. Friedel-Crafts Acylation Using Sulfated Zirconia as a Catalyst. Green Chem., 1999, 1, 69.

    (41) Guo, C.; Yao, S.; Cao, J.; Qian, Z. Alkylation of Isobutene with Butanes over Solid Superacid : SO42-/ZrO2 and SO42-/TiO2. Appl. Catal. A: Gen., 1994, 107, 229.

    (42) Corma, A.; Martinez, A.; Martinez, C. Influence of Process Variables on the Continous Alkylation of Isobutane with 2-Butene on Superacid Sulfated Zirconia Catalysts. J. Catal., 1994, 149, 52.

    (43) Gore, R. B.; Thomson, W. J. Pulsed Gas-phase Alkylation of Isobutene/2-Butene over Sulfated Zirconia. Appl. Catal. A: Gen., 1998, 168, 23.

    (44) Ginosar, D.; Coates, K.; Thompson, D. The Effects of Supercritical Propane on Alkylation of Toluene with Ethylene over USY and Sulfated Zirconia Catalyst, Ind. Eng. Chem. Res., 2002, 41, 6537.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE