簡易檢索 / 詳目顯示

研究生: 呂盈締
Ying-Ti Lu
論文名稱: 金屬直接奈米壓印之成型研究
Study of the Metallic Pattern Formation by means of Direction Nanoimprint
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 奈米壓印金屬薄膜原子級應力圖案成型分子動力學
外文關鍵詞: nanoimprint, metallic thin films, atomic stress, pattern-formation, molecular dynamics simulation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究金屬直接奈米壓印,利用奈米結構圖案製作之矽模具,對鋁薄膜進行圖形轉印,若能將模具圖形毫不失真的複製到鋁製薄膜上,達到高保真度的成型結果,則可稱為極佳的壓印品質。論文在討論壓印品質之前,先對奈米直接金屬壓印之成型機制做探討,利用分子動力學模擬壓印過程,根據應力分佈情形觀察表面效應、基材效應與應力鬆弛等現象,以及過程中所產生之塑性原子來觀察滑移系統與回彈現象。接著進行薄膜厚度、模具模穴寬度與節距比、以及深寬比三項參數之分子動力學模擬與各種相關實驗。模擬中以塑性原子比例、填充率、回彈比例與成型結果比例四項討論影響壓印品質之原因;實驗中利用成型寬度比例與成型高度比例兩種方式進行成型結果與模具對照壓印品質之探討,並藉由模擬來解釋實驗結果。
    由實驗結果對照模擬結果,可以得到以下結論,薄膜厚度愈薄,由於基材效應造成填充率較低、成型結果較差;模穴寬度與節距比愈大,填充率較低、成型高度較差,但模穴內應力較小因此成型寬度較好;高深寬比模具,填充率低、成型結果差。


    The thesis proposes an alternative method which can transfers nano-scale patterns to aluminum (Al) thin films directly. If the template can perfectly reproduce on metallic thin films, then it is called high fidelity patterns and the best quality of nanoimprint. Molecular dynamics simulation is utilized to simulate the nanoimprint process and via examining the atomic stress, the surface effect, substrate effect and stress relaxation are discussed. From the plastic atoms produced by nanoimprint process, the slip system and the springback phenomenon can be observed. The simulations and the experiments are implemented for three parameters, the thickness of the metallic thin film, the mold space to a periodic width and the aspect ratio of the mold-teeth. In the simulation, the effect of nanoimprint quality will be discussed by plastic-atom ratio, filling rate, springback ratio, and pattern-formation ratio. In the experiments, the difference between the pattern on the thin film and on the mold, meant the quality of nanoimprint, is presented by the formed pattern of width and the formed pattern of height.
    From the simulation and experimental results, the following phenomena can be observed. When the thickness of the film decreases, the filling rate is lower owing to substrate effect and it induces the worse formed pattern. With increasing the mold space to the periodic width, the filling rate decreases and the formed pattern of height is shorter. But the formed pattern of width is better because of lower stress in the mold space during imprinting. For high aspect ratio mold, the filling rate is lower and the formed pattern is worse.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 VI 圖目錄 VII 表目錄 XI 符號解釋 XII 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 4 1.2.1奈米壓印 4 1.2.2 分子動力學 7 1.3 研究動機與本文內容 9 第二章 分子動力學理論 11 2.1 基本假設與運動方程式 11 2.2 分子間作用力與勢能函數 12 2.2.1 Lennard-Jones potential 13 2.2.2 Morse potential 14 2.3 模擬系統簡化計算 15 2.3.1 截斷勢能 15 2.3.2 Verlet鄰近表列 16 2.4 邊界條件 18 2.4.1 週期性邊界條件 18 2.4.2 最小映像法則 19 2.5 系統初始值 21 2.5.1 初始位置 21 2.5.2 初始速度 21 2.6參數無因次化 22 2.7 Gear五階預測修正演算法 23 2.8速度修正 25 2.9 原子級應力 26 2.10 程式流程 28 第三章 系統模擬與金屬壓印實驗準備 30 3.1物理模型 30 3.2模擬參數 32 3.3 奈米壓印之應力與成型機制探討 34 3.3.1 滑移系統 36 3.3.2 表面效應 40 3.3.3 基材效應 41 3.3.4 應力鬆弛 43 3.3.5 回彈效應 44 3.4模擬結果與討論 45 3.4.1 薄膜厚度對充模成型之影響 45 3.4.2 模具模穴寬度與節距比對充模成型之影響 55 3.4.3 模具深寬比對充模成型之影響 61 3.5參數模擬結論 69 第四章 實驗儀器介紹與實驗準備 71 4.1 實驗儀器設備介紹 71 4.2實驗參數 73 4.3 實驗流程 75 4.4 模具製作與鋁薄膜製作 76 4.4.1 模具製程 76 4.4.2 鋁薄膜製程 77 4.4 實驗量測項目 79 第五章 實驗結果與討論 80 5.1 壓印實驗前量測 80 5.1.1 模具量測結果與討論 80 5.1.2 鋁薄膜量測結果與討論 87 5.2 鋁薄膜奈米壓印之熱加工實驗結果與討論 88 5.3 鋁薄膜奈米壓印之冷加工實驗與模擬結果討論 92 5.3.1 鋁薄膜厚度 103 5.3.2模具模穴寬度與節距比 105 5.3.2 模具深寬比 106 5.4 壓印實驗結果討論 109 第六章 結論與未來工作 111 6.1 結論 111 6.2 未來工作 112 參考文獻 114

    [1]Stephen Y. Chou, “Sub-10nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp.2897-2904, 1997.
    [2]Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Sarng H. Lee, Joo-Do Park, Phil-Won Yoon, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78-79, No.1-4, pp.314-318, 2005.
    [3]Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Joo-Do Park, Sarng-Hoon Lee and Phil-Won Yoon, “Fabrication of a 50 nm Half-pitch Wire Grid Polarizer Using Nano-imprint Lithography,” Institute of Physics Publishing, Nanotechnology 16, pp.1874–1877, 2005.
    [4]Jiarui Tao, Yifang Chen, Xingzhong Zhao, Adnan Malik, Zheng Cui, “Room Temperature Nanoimprint Lithography Using a Bilayer of HSQ/PMMA Resist Stack,” Microelectronic Engineering, Vol.78-79, No.1-4, pp.665-669, 2005.
    [5]許源泉, “塑性加工學,” 全華科技圖書股份有限公司,2005.
    [6]Jakob Schiotz and Karsten W. Jacobsen, “A Maximum in the Strength of Nanocrystalline Copper,” SCIENCE, Vol. 301,pp.1357-1359, 2003.
    [7]Hans Conrad and J. Narayan, “Mechanism for Grain Size Softening in Nanocrystalline Zn,” Applied Physics Letters, Vol. 81, No. 12, pp.2241-2243, 2002.
    [8]C.A. Schuh, T.G. Nieh, H. Iwasaki, “The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni,” Acta Materialia 15, pp.431–443, 2003.
    [9]謝雲亮, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文,2005.
    [10]Te-Hua Fang, Sheng-Rui Jian and Der-San Chuu, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys. Vol. 41, pp.L1328–L1331, 2002.
    [11]Quang-Cherng Hsu, Chen-Da Wu and Te-Hua Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp.7665-7669, 2004.
    [12]陳星佑, “溫度效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文,2005.
    [13]Yoshihiko Hirai, Masaki Fujiwara, Takahiro Okuno, and Yoshio Tanaka, “Study of the Resist Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol. B, Vol. 19, No. 6, pp.2811-2815, 2001.
    [14]Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa, and Satoshi Yoshida, “Simulation and Experimental Study of Polymer Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol. B 22(6), pp.3288-3293, 2004.
    [15]Pil S. Hong and Hong H. Lee, “Pattern Uniformity Control in Room-temperature Imprint Lithography,” Applied Physics Letters, Vol. 83, No. 12, pp.2441-2443, 2003.
    [16]Christel Martin, Laurence Ressier, Jean Pieere Peyrade, “Study of PMMA Recoveries on Micrometric Patterns Replicated by Nano-imprint Lithography,” Physica E 17, pp.523-525, 2003.
    [17]J. H. Irving, and J. G. Kirkwood, ”The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” J. Chem. Phys. 18, pp. 817-829, 1950.
    [18]J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
    [19]Girifalco, L.A. and Weizer, V.G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No. 3, pp.687-690, 1959.
    [20]L. Verlet, “ Computer Eexperiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev, Vol. 159, pp.98, 1967.
    [21]David Christopher, Roger Smith and Asta Richter, “Atomistic Modelling of Nanoindentation in Iron and Silver,” Institute of Physics Publishing, Nanotechnology 12, pp.372–383, 2001.
    [22]Te-Hua Fang, Cheng-I Weng, Jee-Gong Chang, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement,” Materials Science and Engineering , A357, pp.7-12, 2003.
    [23]J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1997.
    [24]徐志強,”以分子動力學方法研究奈米微結構之缺陷,” 國立成功大學碩士論文,2002 .
    [25]Toshihiro IWAKI, “Molecular Dynamics Study on Stress-Strain in Very Thin Film,” JSME, series A, Vol. 39, No. 3, 1996, pp.346-353
    [26]Noriyuki Miyazaki and Yasunori Shiozaki, ”Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” JSME, series A, Vol. 39, No. 4, 1996, pp.606-612
    [27]D. Srolovitz, K. Maeda, V. Vitek and T. Egami, “Strucyure Defects in Amorphous Solids Statistical Analysis of a Computer Model,” Philosophical Magazine A, Vol. 44, No. 4, pp.847-866, 1981.
    [28]J. F. Lutsko, “Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques,” J. Appl. Phys., Vol 64, No. 3, pp.1152-1154, 1988.
    [29]Lee, Hyon-Jee, Cagin, Tahir, Goddard III, William A., Johnson, William L.; “Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals,” Journal of Metastable and Nanocrystalline Materials, Vol. 15-16 ,pp.181-186, 2003.
    [30]William D. Callister, JR., “Fundamentals of Materials Science and Engineering,” John Wiley & Sons, Inc., 2001
    [31]Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles,” third edition, PWS-KENT, 1992.
    [32]蕭志仲, “溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗,” 國立清華大學 碩士論文,2004
    [33]楊挺青, “黏彈性力學,” 華中理工大學出版社,1990.
    [34]Anil Gannepalli and Surya K Mallapragada, “Molecular Dynamics Studies of Plastic Deformation during Silicon Nanoindentation,” Nanotechnology, Vol. 12, No. 3, , pp. 250-257, 2001.
    [35]Harry D Rowland, Amy C Sun, P Randy Schunk, and William P King, “Impact of Polymer Film Thickness and Cavity Size on Polymer Flow during Embossing: toward Process Design Rules for Nanoimprint Lithography,” Journal of Micromechanics and Microengineering, Vol. 15, No. 12, pp. 2414-2425, 2005.
    [36]http://rdweb.adm.nctu.edu.tw/page.php?serial=217, 2006/06/09.
    [37]http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem, 2006/06/09.
    [38]http://www.hysitron.com/Products/ProductPages/products_
    triboindenter.htm, 2006/06/09.
    [39]http://www.srrc.gov.tw/chi/about/, 2006/06/09.
    [40]http://www.mirl.itri.org.tw/mirl-inter/coretech/core_c/c01b.asp, 2006/06/27
    [41]George E. Dieter, “Mechanical metallurgy,” McGraw-Hill Book Company, 1986.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE