研究生: |
呂盈締 Ying-Ti Lu |
---|---|
論文名稱: |
金屬直接奈米壓印之成型研究 Study of the Metallic Pattern Formation by means of Direction Nanoimprint |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 奈米壓印 、金屬薄膜 、原子級應力 、圖案成型 、分子動力學 |
外文關鍵詞: | nanoimprint, metallic thin films, atomic stress, pattern-formation, molecular dynamics simulation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究金屬直接奈米壓印,利用奈米結構圖案製作之矽模具,對鋁薄膜進行圖形轉印,若能將模具圖形毫不失真的複製到鋁製薄膜上,達到高保真度的成型結果,則可稱為極佳的壓印品質。論文在討論壓印品質之前,先對奈米直接金屬壓印之成型機制做探討,利用分子動力學模擬壓印過程,根據應力分佈情形觀察表面效應、基材效應與應力鬆弛等現象,以及過程中所產生之塑性原子來觀察滑移系統與回彈現象。接著進行薄膜厚度、模具模穴寬度與節距比、以及深寬比三項參數之分子動力學模擬與各種相關實驗。模擬中以塑性原子比例、填充率、回彈比例與成型結果比例四項討論影響壓印品質之原因;實驗中利用成型寬度比例與成型高度比例兩種方式進行成型結果與模具對照壓印品質之探討,並藉由模擬來解釋實驗結果。
由實驗結果對照模擬結果,可以得到以下結論,薄膜厚度愈薄,由於基材效應造成填充率較低、成型結果較差;模穴寬度與節距比愈大,填充率較低、成型高度較差,但模穴內應力較小因此成型寬度較好;高深寬比模具,填充率低、成型結果差。
The thesis proposes an alternative method which can transfers nano-scale patterns to aluminum (Al) thin films directly. If the template can perfectly reproduce on metallic thin films, then it is called high fidelity patterns and the best quality of nanoimprint. Molecular dynamics simulation is utilized to simulate the nanoimprint process and via examining the atomic stress, the surface effect, substrate effect and stress relaxation are discussed. From the plastic atoms produced by nanoimprint process, the slip system and the springback phenomenon can be observed. The simulations and the experiments are implemented for three parameters, the thickness of the metallic thin film, the mold space to a periodic width and the aspect ratio of the mold-teeth. In the simulation, the effect of nanoimprint quality will be discussed by plastic-atom ratio, filling rate, springback ratio, and pattern-formation ratio. In the experiments, the difference between the pattern on the thin film and on the mold, meant the quality of nanoimprint, is presented by the formed pattern of width and the formed pattern of height.
From the simulation and experimental results, the following phenomena can be observed. When the thickness of the film decreases, the filling rate is lower owing to substrate effect and it induces the worse formed pattern. With increasing the mold space to the periodic width, the filling rate decreases and the formed pattern of height is shorter. But the formed pattern of width is better because of lower stress in the mold space during imprinting. For high aspect ratio mold, the filling rate is lower and the formed pattern is worse.
[1]Stephen Y. Chou, “Sub-10nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp.2897-2904, 1997.
[2]Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Sarng H. Lee, Joo-Do Park, Phil-Won Yoon, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78-79, No.1-4, pp.314-318, 2005.
[3]Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Joo-Do Park, Sarng-Hoon Lee and Phil-Won Yoon, “Fabrication of a 50 nm Half-pitch Wire Grid Polarizer Using Nano-imprint Lithography,” Institute of Physics Publishing, Nanotechnology 16, pp.1874–1877, 2005.
[4]Jiarui Tao, Yifang Chen, Xingzhong Zhao, Adnan Malik, Zheng Cui, “Room Temperature Nanoimprint Lithography Using a Bilayer of HSQ/PMMA Resist Stack,” Microelectronic Engineering, Vol.78-79, No.1-4, pp.665-669, 2005.
[5]許源泉, “塑性加工學,” 全華科技圖書股份有限公司,2005.
[6]Jakob Schiotz and Karsten W. Jacobsen, “A Maximum in the Strength of Nanocrystalline Copper,” SCIENCE, Vol. 301,pp.1357-1359, 2003.
[7]Hans Conrad and J. Narayan, “Mechanism for Grain Size Softening in Nanocrystalline Zn,” Applied Physics Letters, Vol. 81, No. 12, pp.2241-2243, 2002.
[8]C.A. Schuh, T.G. Nieh, H. Iwasaki, “The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni,” Acta Materialia 15, pp.431–443, 2003.
[9]謝雲亮, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文,2005.
[10]Te-Hua Fang, Sheng-Rui Jian and Der-San Chuu, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys. Vol. 41, pp.L1328–L1331, 2002.
[11]Quang-Cherng Hsu, Chen-Da Wu and Te-Hua Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp.7665-7669, 2004.
[12]陳星佑, “溫度效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文,2005.
[13]Yoshihiko Hirai, Masaki Fujiwara, Takahiro Okuno, and Yoshio Tanaka, “Study of the Resist Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol. B, Vol. 19, No. 6, pp.2811-2815, 2001.
[14]Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa, and Satoshi Yoshida, “Simulation and Experimental Study of Polymer Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol. B 22(6), pp.3288-3293, 2004.
[15]Pil S. Hong and Hong H. Lee, “Pattern Uniformity Control in Room-temperature Imprint Lithography,” Applied Physics Letters, Vol. 83, No. 12, pp.2441-2443, 2003.
[16]Christel Martin, Laurence Ressier, Jean Pieere Peyrade, “Study of PMMA Recoveries on Micrometric Patterns Replicated by Nano-imprint Lithography,” Physica E 17, pp.523-525, 2003.
[17]J. H. Irving, and J. G. Kirkwood, ”The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” J. Chem. Phys. 18, pp. 817-829, 1950.
[18]J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
[19]Girifalco, L.A. and Weizer, V.G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No. 3, pp.687-690, 1959.
[20]L. Verlet, “ Computer Eexperiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev, Vol. 159, pp.98, 1967.
[21]David Christopher, Roger Smith and Asta Richter, “Atomistic Modelling of Nanoindentation in Iron and Silver,” Institute of Physics Publishing, Nanotechnology 12, pp.372–383, 2001.
[22]Te-Hua Fang, Cheng-I Weng, Jee-Gong Chang, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement,” Materials Science and Engineering , A357, pp.7-12, 2003.
[23]J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1997.
[24]徐志強,”以分子動力學方法研究奈米微結構之缺陷,” 國立成功大學碩士論文,2002 .
[25]Toshihiro IWAKI, “Molecular Dynamics Study on Stress-Strain in Very Thin Film,” JSME, series A, Vol. 39, No. 3, 1996, pp.346-353
[26]Noriyuki Miyazaki and Yasunori Shiozaki, ”Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” JSME, series A, Vol. 39, No. 4, 1996, pp.606-612
[27]D. Srolovitz, K. Maeda, V. Vitek and T. Egami, “Strucyure Defects in Amorphous Solids Statistical Analysis of a Computer Model,” Philosophical Magazine A, Vol. 44, No. 4, pp.847-866, 1981.
[28]J. F. Lutsko, “Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques,” J. Appl. Phys., Vol 64, No. 3, pp.1152-1154, 1988.
[29]Lee, Hyon-Jee, Cagin, Tahir, Goddard III, William A., Johnson, William L.; “Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals,” Journal of Metastable and Nanocrystalline Materials, Vol. 15-16 ,pp.181-186, 2003.
[30]William D. Callister, JR., “Fundamentals of Materials Science and Engineering,” John Wiley & Sons, Inc., 2001
[31]Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles,” third edition, PWS-KENT, 1992.
[32]蕭志仲, “溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗,” 國立清華大學 碩士論文,2004
[33]楊挺青, “黏彈性力學,” 華中理工大學出版社,1990.
[34]Anil Gannepalli and Surya K Mallapragada, “Molecular Dynamics Studies of Plastic Deformation during Silicon Nanoindentation,” Nanotechnology, Vol. 12, No. 3, , pp. 250-257, 2001.
[35]Harry D Rowland, Amy C Sun, P Randy Schunk, and William P King, “Impact of Polymer Film Thickness and Cavity Size on Polymer Flow during Embossing: toward Process Design Rules for Nanoimprint Lithography,” Journal of Micromechanics and Microengineering, Vol. 15, No. 12, pp. 2414-2425, 2005.
[36]http://rdweb.adm.nctu.edu.tw/page.php?serial=217, 2006/06/09.
[37]http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem, 2006/06/09.
[38]http://www.hysitron.com/Products/ProductPages/products_
triboindenter.htm, 2006/06/09.
[39]http://www.srrc.gov.tw/chi/about/, 2006/06/09.
[40]http://www.mirl.itri.org.tw/mirl-inter/coretech/core_c/c01b.asp, 2006/06/27
[41]George E. Dieter, “Mechanical metallurgy,” McGraw-Hill Book Company, 1986.