簡易檢索 / 詳目顯示

研究生: 蔡斐然
論文名稱: 利用TRACE進行沸水式核能電廠於ATWS下MSIV關閉後之抑壓池暫態分析
Use Trace Code to Analyze ABWR/BWR Suppression Pool Transient Under ATWS'S MSIV Closure Situation
指導教授: 施純寬
王仲容
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 150
中文關鍵詞: 核四龍門電廠主蒸汽隔離閥抑壓池
外文關鍵詞: TRACE, ABWR, MSIV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文以核一、核二、核四廠之抑壓池做為研究對象,以TRACE為模擬程式,針對100% POWER主蒸汽隔離閥關閉之ATWS安全事故發生時,安全釋壓閥(SRV)開啟所排放的蒸汽進入液壓池的水中冷卻高溫高壓蒸汽之狀態做分析,在以TRACE為程式架構前提下,使用CONTAN模組建立抑壓池系統,作為BWR/ABWR抑壓池暫態反應分析。
    在此探討之反應爐預期暫態未急停是指核能電廠發生預期運轉事件達反應爐保護系統動作設定,但動作失效無法使反應爐急停,此處所指之預期運轉事件在核能電廠運轉年限中,預期會發生一次或多次。10CFR50.62[9] 對預期暫態未急停之要求為:增設一套再循環水泵跳脫系統、增設一套替代性插棒系統、增加硼酸濃縮度、增加一套自動注硼系統、及增加一套飼水自動回退系統。
    TRACE系統模式驗證工作以核一、核二、核四廠設計資料與ATWS事故分析報告為基礎,藉由這三座核電廠事故案例以TRACE做為驗證流程流量與壓降計算模式,並以雷傳分析工具(RETRAN)當作輔佐工具,來輔佐此TRACE模型,本論文中使用雷傳分析工具輔助進行此三座電廠之預期暫態未急停事故分析,並且擷取雷傳計算結果當作TRACE模型的輸入檔;在此,我們驗證此TRACE模型所得到的結果將符合電廠終期安全分析報告FSAR對於抑壓池溫度的最大限值內。
    此外,在事故探討上,本論文將討論抑壓池及替代性插棒系統、自動注硼系統等安全裝置對於核電廠安全的影響,此研判也可作為未來核一、核二、核四廠ATWS事故分析的參考。


    ABSTRACT
    In this thesis, we use the 1st, 2nd and 4th Nuclear Power Plants as our research studies. We use the TRACE tool to build a CONTAN module. We use the CONTAN module to simulate the suppression pool. When MSIV Closure occurs at 100 % power, the SRV’s will open and steam will flow into the suppression pool. This thesis focuses on the analysis of suppression pool with MSIV Closure occurring at 100 % power (ATWS).
    Anticipated Transient Without Scram, abbreviated as ATWS, means an anticipated operational occurrence followed by failure of the Reactor Protection System. Anticipated operational occurrences (AOOs), are expected to occur one or more times during the life of a nuclear power unit. The integrated ATWS prevention and mitigation features are designated as a Redundant Reactivity Control System. In this thesis, we will focus on (1) Alternate Rod Insertion (ARI) and Fine Motion Control Drive (FMCRD), and (2) automatic SLCS.
    By using the TRACE CONTAN module, we will prove that the test results of ATWS performance evaluation stay within FSAR and design margin. We will use RETRAN as an auxiliary tool to verify our studies. We will use the RETRAN output of steam flow from SRV with MSIV Closure occurring at 100 % power ATWS as the input for the TRACE model. We will verify that our results stay within the most limiting values.
    In conclusion, we will analyze the impacts of ARI, FMCRD, and SLCS on nuclear power plant safety. This thesis can also be used as a reference for Chinshan, Kuosheng and Lungmen plants’ ATWS analysis in the future.

    TABLE OF CONTENTS 摘 要 I ABSTRACT II 致 謝ACKNOWLEDGEMENT III ACRONYMS AND ABBREVIATION IV TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VII 1. INTRODUCTION 1 2. DESCRIPTION OF TRACE CODE 2 2.1 OVERVIEW 2 2.2 INSTALLATION AND CONFIGURATION 4 2.2.1 STEP 1 - Install jEdit and the SNAP-jEdit plug-in (optional) 4 2.2.2 STEP 2 - Install the APT Plotting Software (optional) 6 2.3 THEOREM OF RELAVENT COMPONENTS 18 2.3.1 TRACE COMPONENT “FILL” 18 2.3.2 TRACE COMPONENT “BREAKER” 24 2.3.3 TRACE COMPONENT “PIPE” 34 2.3.4 TRACE COMPONENT “CONTAN” 38 3. SIMULATION METHODS 63 3.1 TRACE BUILDING MODEL 67 3.2 INPUT DESCRIPTIONS 71 4. RESULTS AND DISCUSSIONS 74 4.1 TRANSIENT SCENARIOS DESCRIPTIONS 74 4.1.1 CHINSHAN NUCLEAR POWER PLANT 75 4.1.1.1 MITIGATION METHOD : ACTIVATION OF SLCS 78 4.1.2 KUOSHENG NUCLEAR POWER PLANT 84 4.1.2.1 MITIGATION METHOD : ACTIVATION OF SLCS 88 4.1.3 LUNGMEN NUCLEAR POWER PLANT 94 4.1.3.1 MITIGATION METHOD : ACTIVATION OF ARI 95 4.1.3.2 MITIGATION METHOD : ACTIVATION OF FMCRD 98 4.1.3.3 MITIGATION METHOD : ACTIVATION OF SLCS 101 4.2 SUPPRESSION POOL TEMPERATURE TRANSIENT 104 4.2.1 CHINSHAN NUCLEAR POWER PLANT 104 4.2.1.1 MITIGATION METHOD: ACTIVATION OF SLCS 105 4.2.2 KOUSHENG NUCLEAR POWER PLANT 110 4.2.2.1 MITIGATION METHOD: ACTIVATION OF SLCS 110 4.2.3 LUNGMEN NUCLEAR POWER PLANT 116 4.2.3.1 MITIGATION METHOD: ACTIVATION OF ARI 116 4.2.3.2 MITIGATION METHOD: ACTIVATION OF FMCRD 122 4.2.3.3 MITIGATION METHOD: ACTIVATION OF SLCS 127 4.3 RESULTS COMPARISON TABLES 138 5. CONCLUSIONS 140 REFERENCE 142 APPENDIX A –TRACE CODE FOR SIMULATION STUDY 144 LIST OF TABLES Table 2-1 Example Input for CONTAN Component 43 Table 2-2 Volume versus Depth Table for Compartment 51 in Table 2-1 47 Table 2-3 Volume versus Depth Table for Compartment 52 in Table 2-1 48 Table 2-4 Cooler Temperature Table for Example Given in Table 2-1 54 Table 2-5 Example Input for BREAK Component Type 7. 61 Table 2-6 Example Input for FILL Component Type 7. 62 Table 4-2 Lungmen MSIV Closure Summary (FMCRD Run-In, EOC) 134 Table 4-3 Lungmen MSIV Closure Summary (Boron Injection, EOC) 134 Table 4-4 Thermal Power per Suppression Pool Volume 138 Table 4-5 Chinshan Suppression Pool Temperature Comparison 138 Table 4-6 Kousheng Suppression Pool Temperature Comparison 138 Table 4-7 Lungmen Suppression Pool Temperature Comparison (ARI) 139 Table 4-8 Lungmen Suppression Pool Temperature Comparison (FMCRD) 139 Table 4-9 Lungmen Suppression Pool Temperature Comparison (SLCS) 139 LIST OF FIGURES Figure 1 SNAP TRACE MODEL EDIT DISPLAY 3 Figure 2 jEdit DISPLAY 5 Figure 3 APT Plotting Tools DISPLAY 8 Figure 4 SNAP TRACE CONFIGURATION DISPLAY 9 Figure 5 SNAP TRACE JOB STATUS DISPLAY 11 Figure 6 SNAP TRACE JOB SUMITTED DISPLAY 15 Figure 7 SNAP TRACE JOB SUMITTED CONSOLE DISPLAY 16 Figure 8 BREAK-component nodding diagram 21 Figure 9 FILL-component nodding diagram 23 Figure 10 TRACE Unchoked Flow Assessment Model 28 Figure 11 TRACE Choked Flow Assessment Mode 33 Figure 12 PIPE-component nodding diagram 37 Figure 13 A Typical BWR Containment 39 Figure 14 Compartment Spilling Model 49 Figure 15 The size of Lungmen Suppression Pool 65 Figure 16 Lungmen Main Steam System 66 Figure 17 TRACE Over All Diagram 68 Figure 18 The SRV on Steam Line 68 Figure 19 TRACE Suppression Pool Model 69 Figure 20 TRACE Component FILL Coupled With CONTAN 70 Figure 21 TRACE Components 73 Figure 22 Schematics of Chinshan Plant RETRAN System Thermal-Hydraulic Model 81 Figure 23 Schematics of Chinshan Plant RETRAN System Thermal-Hydraulic Model SRV Steam Flow 82 Figure 24 Schematics of Chinshan Plant RETRAN System Thermal-Hydraulic Model SRV Pressure 83 Figure 25 Schematics of Kuosheng Plant RETRAN System Thermal-Hydraulic Model 91 Figure 26 Schematics of Kuosheng Plant RETRAN System Thermal-Hydraulic Model SRV Steam Flow 92 Figure 27 Schematics of Kuosheng Plant RETRAN System Thermal-Hydraulic Model SRV Pressure 93 Figure 28 The Steam Flow from SRV after ARI 96 Figure 29 The Pressure of SRV after ARI 97 Figure 30 The Steam Flow from SRV after FMCRD 99 Figure 31 The Pressure of SRV after FMCRD 100 Figure 32 The Steam Flow from SRV after SLCS 102 Figure 33 The Pressure of SRV after SLCS 103 Figure 34 Chinshan Suppression Pool Temperature 106 Figure 35 Chinshan SHEX-05A Suppression Pool Temperature 108 Figure 36 Kuosheng Suppression Pool Temperature 112 Figure 37 Kuosheng SHEX-05A Suppression Pool Temperature 114 Figure 38 The Suppression pool temperature of ARI 118 Figure 39 Lungmen STEMP Suppression Pool Temperature (ARI, EOC) 120 Figure 40 The Suppression pool temperature of FMCRD Run-In 123 Figure 41 Lungmen STEMP Suppression Pool Temperature (FMCRD, EOC) 125 Figure 42 The Suppression pool temperature of SLCS injection 129 Figure 43 ARI, FMCRD and SLCS 130 Figure 44 Lungmen STEMP Suppression Pool Temperature (SLCS, EOC) 132 Figure 45 Lungmen MSIV Closure Summary (ARI, EOC) 135 Figure 46 Lungmen MSIV Closure Summary (FMCRD Run-In, EOC) 136 Figure 47 Lungmen MSIV Closure Summary (Boron Injection, EOC) 137

    [1] “TRACE V4.160 USER’S MANUAL VOLUME 2”, 2007, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission Washington, DC 20555-0001.
    [2] “Lungmen Unit 1 & 2 Final Safety Analysis Report Draft”, Aug. 2006, Taiwan Power Company.
    [3] “Chinshan Plant Units 1 & 2 Final Safety Analysis Report”, sections 7.6.2.15 (RRCS, December 1993, Amendment 6) and 15.1.34 (Anticipated Transient Without Scram, December 1993, Amendment 6), Taiwan Power Company.
    [4] “Evaluation of Chinshan ATWS Performance Final report”, GENE-770-39-0991, September 1991, General Electric Company.
    [5] “NEDC-32039P”, revision 1, Class III, DRF A00-05010, maximum Extended load Line Limit and ARTS Improvement Program Analyses for Chinshan Nuclear Power Station Unit 1 and 2, November 1992, General Electric Company.
    [6] “Kousheng Plant Units 1 & 2 Final Safety Analysis Report”, sections
    7.6.1.14.2 (RRCS, December 2001, Amendment 12) and 15.8 (Anticipated Transient Without Scram, October 2004, Amendment 14), Taiwan Power Company.
    [7] Kuosheng Nuclear Power Station Performance of ATWS Mitigation System
    at Rated Power Operation and at Maximum Extended Operating Domain,
    GENE-770-16-0692, June 1992, General Electric Company.
    [8] 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants.
    [9] 10CFR50.62, Requirements for Reduction of Risk from Anticipated
    Transient without Scram (ATWS) Events for Light Water Cooled Nuclear
    Power Plants, June 24, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE