簡易檢索 / 詳目顯示

研究生: 陳仕閔
Chen, shih min
論文名稱: 以電化學分離法轉印之高潔淨石墨烯電晶體特性研究
Characteristics of High Cleanliness CVD Graphene Transistors Using Electrochemical Delamination Transfer
指導教授: 邱博文
Chiu, po wen
口試委員: 鄭舜仁
李奎毅
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 石墨烯電晶體電化學轉印潔淨
外文關鍵詞: graphene, transistor, Electrochemical Delamination, transfer, Cleanliness
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯因有超高的電子遷移率特性而使其電晶體應用備受期待,但以CVD石墨烯製作出的電晶體卻因製程汙染而使遷移率大幅降低;其汙染,主要源自CVD石墨烯轉印過程中的銅箔金屬催化劑蝕刻而導致的金屬粒子雜質與水分子吸附。本論文欲透過電化學分離法快速剝離而不溶蝕銅箔的蝕刻機制,加上異丙醇介面置換,降低轉印製程的汙染並改善CVD石墨烯轉印潔淨度與電晶體品質;並以光學、穿透式電子顯微鏡與真空變溫的電晶體電性量測,分析其潔淨度改善程度。本文從實驗結果指出:電化學分離法優於一般化學蝕刻法(鹽酸與氯化鐵),使場效電洞遷移率可至1250cm2/Vs;並提出改善蝕刻與轉印製程的建議。


    目錄 摘要..................... I 致謝..................... III 目錄..................... VI 第一章緒論........... 1 1.1 半導體的發展與侷限 . . 1 1.1.1半導體科技發展 . . 1 1.1.2主流半導體-矽的侷限. . 2 1.2 碳材料-石墨烯. . 2 1.2.1 晶體與電子能帶結構 . . 2 1.2.2 MOS電晶體場效應 . . 6 1.2.3 CVD石墨烯成長與轉印. . 7 1.3 研究動機. . 8 1.4 論文架構 . . 8 第二章石墨烯轉印與表面潔淨度... 9 2.1 實驗設計 . . 9 2.2 CVD石墨烯轉印技術 . . 11 2.2.1 蝕刻法 . . 11 2.2.2 電化學分離法 . . 12 2.2.3 表面與介面潔淨度. . 12 2.3 穿透式電子顯微鏡的石墨烯觀測 . 16 2.4 CVD石墨烯場效電晶體 . . 17 2.4.1 石墨烯載子傳輸理論. . 17 2.4.2長程庫倫散射與短程散射. . 21 2.4.3聲頻與光頻聲子散射 . . 24 2.4.4 表面波紋與中間能隙態散射. 27 2.4.5 低載子濃度電性傳輸 . . 27 2.4.6 電性遲滯. . 29 第三章樣品製備與實驗探討.. 33 3.1 石墨烯場效電晶體元件製備. . 33 3.1.1CVD石墨烯成長與輔助層塗佈 . . 33 3.1.2 蝕刻:電化學分離法與蝕刻法. . . 34 3.1.3 介面清潔與轉移:雜質與水分子置換 . . 36 3.1.4 元件後段製程:電子束微影、金屬沉積與舉離 . . 37 3.2 TEM樣品製備與檢測 . . 38 3.3 石墨烯電晶體電性量測 . . 41 3.4 石墨烯電晶體電性萃取 . . 42 第四章研究結果與討論.. 49 4.1蝕刻法與電化學分離法顯微鏡影像分析. . . 49 4.1.1 轉印造成的石墨烯破損 . . 49 4.1.2 轉印後的汙染物吸附 . . 53 4.2 水分子吸附電性分析 . . 55 4.2.1 大氣、真空與低溫電性量測結果. . 55 4.2.2 遲滯機制的觀測與討論. . 58 4.2.3 水分子的吸附情形. . . 61 4.3 蝕刻法與電化學分離法電性分析 . . 62 4.3.1 電荷摻雜分析. . . 62 4.3.2 電性曲線與傳輸模型擬合分析 . . 65 4.3.3 低載子濃度電性傳輸分析. . 67 4.3.4 高載子濃度電性傳輸分析. . 71 4.3.5 石墨烯電晶體的電性不對稱分析 . . . 75 第五章結論與建議.. 79 參考文獻.. 81

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
    I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
    films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [2] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties
    and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–
    388, 2008.
    [3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.
    Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8,
    no. 3, pp. 902–907, 2008.
    [4] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current
    density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114,
    2009.
    [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and
    H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State
    Commun., vol. 146, no. 9, pp. 351–355, 2008.
    [6] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3,
    pp. 183–191, 2007.
    [7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,
    N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency
    of graphene,” Science, vol. 320, no. 5881, pp. 1308–1308, 2008.
    [8] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and
    K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,”
    Nat. Mater., vol. 6, no. 9, pp. 652–655, 2007.
    81
    參考文獻參考文獻
    [9] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 5, no. 7, pp. 487–496,
    2010.
    [10] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced
    graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.,
    vol. 3, no. 5, pp. 270–274, 2008.
    [11] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,”
    Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
    [12] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for
    dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
    [13] D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties
    of graphene: a theoretical perspective,” Adv. Phys., vol. 59, no. 4, pp. 261–482,
    2010.
    [14] P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano
    Lett., vol. 10, no. 11, pp. 4285–4294, 2010.
    [15] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634,
    1947.
    [16] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill,
    and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science,
    vol. 327, no. 5966, pp. 662–662, 2010.
    [17] H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,”
    IEEE Electron Device Lett., vol. 30, no. 5, pp. 547–549, 2009.
    [18] X. Yang, G. Liu, A. A. Balandin, and K. Mohanram, “Triple-mode single-transistor
    graphene amplifier and its applications,” ACS Nano, vol. 4, no. 10, pp. 5532–5538,
    2010.
    [19] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu,
    C. Dimitrakopoulos, A. Grill, P. Avouris, et al., “Wafer-scale graphene integrated
    circuit,” Science, vol. 332, no. 6035, pp. 1294–1297, 2011.
    82
    參考文獻
    [20] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L.
    Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thicknessdependent
    etching and strong chemical doping,” Nano Lett., vol. 8, no. 7, pp. 1965–
    1970, 2008.
    [21] S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus,
    “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2
    substrate,” Nano Lett., vol. 10, no. 12, pp. 4944–4951, 2010.
    [22] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,
    E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films
    on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
    [23] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga, and P.-W. Chiu, “Clean transfer
    of graphene for isolation and suspension,” ACS Nano, vol. 5, no. 3, pp. 2362–2368,
    2011.
    [24] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene
    annealing: How clean can it be?,” Nano Lett., vol. 12, no. 1, pp. 414–419, 2012.
    [25] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, “Electrochemical
    delamination of cvd-grown graphene film: Toward the recyclable use of
    copper catalyst,” ACS Nano, vol. 5, no. 12, pp. 9927–9933, 2011.
    [26] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M.
    Peng, et al., “Repeated growth and bubbling transfer of graphene with millimetresize
    single-crystal grains using platinum,” Nat. Commun., vol. 3, p. 699, 2012.
    [27] J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson,
    R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic
    performance-limiting factors in graphene grown by chemical vapor deposition,”
    ACS Nano, vol. 6, no. 4, pp. 3224–3229, 2012.
    [28] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transferprinting
    in device active-areas on large wafer,” Nano Lett., vol. 7, no. 12, pp. 3840–
    3844, 2007.
    [29] L.-H. Liu and M. Yan, “Simple method for the covalent immobilization of
    graphene,” Nano Lett., vol. 9, no. 9, pp. 3375–3378, 2009.
    83
    參考文獻參考文獻
    [30] M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B.
    Kaner, and Y. Yang, “Soft transfer printing of chemically converted graphene,” Adv.
    Mater., vol. 21, no. 20, pp. 2098–2102, 2009.
    [31] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and
    J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical
    vapor deposition,” Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
    [32] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S.
    Novoselov, and A. K. Geim, “Chaotic dirac billiard in graphene quantum dots,”
    Science, vol. 320, no. 5874, pp. 356–358, 2008.
    [33] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell,
    L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical
    residues on the physical and electrical properties of chemical vapor deposited
    graphene transferred to SiO2,” Appl. Phys. Lett., vol. 99, no. 12, p. 122108, 2011.
    [34] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional
    graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, p. 186806, 2007.
    [35] W. Regan, N. Alem, B. Alemán, B. Geng, Ç. Girit, L. Maserati, F. Wang, M. Crommie,
    and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.,
    vol. 96, no. 11, p. 113102, 2010.
    [36] V. Geringer, D. Subramaniam, A. Michel, B. Szafranek, D. Schall, A. Georgi,
    T. Mashoff, D. Neumaier, M. Liebmann, and M. Morgenstern, “Electrical transport
    and low-temperature scanning tunneling microscopy of microsoldered graphene,”
    Appl. Phys. Lett., vol. 96, no. 8, pp. 082114–082114, 2010.
    [37] J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. Hao, D. Akinwande, and R. S.
    Ruoff, “Enhancement of the electrical properties of graphene grown by chemical
    vapor deposition via controlling the effects of polymer residue,” Nano Lett., vol. 13,
    no. 4, pp. 1462–1467, 2013.
    [38] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C.
    Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry
    in graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2008.
    84
    參考文獻
    [39] E. J. Santos, A. Ayuela, and D. Sánchez-Portal, “Universal magnetic properties
    of sp3-type defects in covalently functionalized graphene,” New J. Phys., vol. 14,
    no. 4, p. 043022, 2012.
    [40] Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic
    graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment
    of SiO2-supported graphene devices,” Nano Lett., vol. 11, no. 2, pp. 767–771,
    2011.
    [41] J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,”
    Appl. Phys. Lett., vol. 91, no. 16, p. 163513, 2007.
    [42] O. Leenaerts, B. Partoens, and F. M. Peeters, “Water on graphene: Hydrophobicity
    and dipole moment using density functional theory,” Phys. Rev. B, vol. 79, no. 23,
    p. 235440, 2009.
    [43] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G.
    Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene
    sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008.
    [44] V. Berry, “Impermeability of graphene and its applications,” Carbon, vol. 62, pp. 1–
    10, 2013.
    [45] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. von Klitzing,
    and J. H. Smet, “Graphene on a hydrophobic substrate: Doping reduction and hysteresis
    suppression under ambient conditions,” Nano Lett., vol. 10, no. 4, pp. 1149–
    1153, 2010.
    [46] P. Joshi, H. Romero, A. Neal, V. Toutam, and S. Tadigadapa, “Intrinsic doping and
    gate hysteresis in graphene field effect devices fabricated on SiO2 substrates,” J.
    Phys.: Condens. Matter, vol. 22, no. 33, p. 334214, 2010.
    [47] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport
    in graphene transistors,” ACS Nano, vol. 4, no. 12, pp. 7221–7228, 2010.
    [48] Y. G. Lee, C. G. Kang, U. J. Jung, J. J. Kim, H. J. Hwang, H.-J. Chung, S. Seo,
    R. Choi, and B. H. Lee, “Fast transient charging at the graphene/SiO2 interface causing
    hysteretic device characteristics,” Appl. Phys. Lett., vol. 98, no. 18, p. 183508,
    2011.
    85
    參考文獻參考文獻
    [49] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H.
    Ta, K. P. So, S. J. Yoon, et al., “Probing graphene grain boundaries with optical
    microscopy,” Nature, vol. 490, no. 7419, pp. 235–239, 2012.
    [50] S. J. Sque, R. Jones, and P. R. Briddon, “The transfer doping of graphite and
    graphene,” Phys. Status Solidi A, vol. 204, no. 9, pp. 3078–3084, 2007.
    [51] N. Ooi, A. Rairkar, and J. B. Adams, “Density functional study of graphite bulk
    and surface properties,” Carbon, vol. 44, no. 2, pp. 231–242, 2006.
    [52] K. Pi, K. M. McCreary, W. Bao, W. Han, Y. F. Chiang, Y. Li, S.-W. Tsai, C. Lau, and
    R. Kawakami, “Electronic doping and scattering by transition metals on graphene,”
    Phys. Rev. B, vol. 80, no. 7, p. 075406, 2009.
    [53] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic
    structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954,
    2006.
    [54] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami,
    “Charged-impurity scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381,
    2008.
    [55] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in
    suspended graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
    [56] S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, “Electronic transport in twodimensional
    graphene,” Rev. Mod. Phys., vol. 83, no. 2, p. 407, 2011.
    [57] A. F. Young and P. Kim, “Quantum interference and klein tunnelling in graphene
    heterojunctions,” Nat. Phys., vol. 5, no. 3, pp. 222–226, 2009.
    [58] O. Klein, “Die reflexion von elektronen an einem potentialsprung nach der relativistischen
    dynamik von dirac,” Physik. Z., vol. 53, no. 3-4, pp. 157–165, 1929.
    [59] T. Ando and T. Nakanishi, “Impurity scattering in carbon nanotubes?absence of
    back scattering,” J. Phys. Soc. Jpn., vol. 67, no. 5, pp. 1704–1713, 1998.
    [60] S. Ryu, C. Mudry, A. Furusaki, and A. Ludwig, “Landauer conductance and twisted
    boundary conditions for dirac fermions in two space dimensions,” Phys. Rev. B,
    vol. 75, no. 20, p. 205344, 2007.
    86
    參考文獻
    [61] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, “Subpoissonian
    shot noise in graphene,” Phys. Rev. Lett., vol. 96, no. 24, p. 246802,
    2006.
    [62] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phasecoherent
    transport in graphene quantum billiards,” Science, vol. 317, no. 5844,
    pp. 1530–1533, 2007.
    [63] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F.
    Morpurgo, and P. J. Hakonen, “Shot noise in ballistic graphene,” Phys. Rev. Lett.,
    vol. 100, no. 19, p. 196802, 2008.
    [64] E. H. Hwang and S. D. Sarma, “Screening-induced temperature-dependent transport
    in two-dimensional graphene,” Phys. Rev. B, vol. 79, no. 16, p. 165404, 2009.
    [65] S. D. Sarma and E. H. Hwang, “Density-dependent electrical conductivity in suspended
    graphene: Approaching the dirac point in transport,” Phys. Rev. B, vol. 87,
    no. 3, p. 035415, 2013.
    [66] J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W. G. Cullen, E. D. Williams, and M. S.
    Fuhrer, “Diffusive charge transport in graphene on SiO2,” Solid State Commun.,
    vol. 149, no. 27, pp. 1080–1086, 2009.
    [67] A. K. M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, and K. I. Bolotin, “Probing
    charge scattering mechanisms in suspended graphene by varying its dielectric
    environment,” Nat. Commun., vol. 3, p. 734, 2012.
    [68] G. Kalon, Y. J. Shin, V. G. Truong, A. Kalitsov, and H. Yang, “The role of charge
    traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer
    graphene,” Appl. Phys. Lett., vol. 99, no. 8, p. 083109, 2011.
    [69] T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys.
    Soc. Jpn., vol. 75, no. 7, 2006.
    [70] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory
    for graphene transport,” Proc. Natl. Acad. Sci., vol. 104, no. 47, pp. 18392–18397,
    2007.
    87
    參考文獻參考文獻
    [71] J. W. Kłos and I. V. Zozoulenko, “Effect of short-and long-range scattering on
    the conductivity of graphene: Boltzmann approach vs tight-binding calculations,”
    Phys. Rev. B, vol. 82, no. 8, p. 081414, 2010.
    [72] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and
    A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning
    single-electron transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2007.
    [73] J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. Williams, “Defect scattering
    in graphene,” Phys. Rev. Lett., vol. 102, no. 23, p. 236805, 2009.
    [74] E. H. Hwang and S. D. Sarma, “Acoustic phonon scattering limited carrier mobility
    in two-dimensional extrinsic graphene,” Phys. Rev. B, vol. 77, no. 11, p. 115449,
    2008.
    [75] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic
    performance limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4,
    pp. 206–209, 2008.
    [76] D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at
    ultrahigh carrier densities,” Phys. Rev. Lett., vol. 105, no. 25, p. 256805, 2010.
    [77] L. Pietronero, S. Strässler, H. R. Zeller, and M. J. Rice, “Electrical conductivity of
    a graphite layer,” Phys. Rev. B, vol. 22, no. 2, p. 904, 1980.
    [78] T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic transport in graphene: A
    semiclassical approach including midgap states,” Phys. Rev. B, vol. 76, no. 20,
    p. 205423, 2007.
    [79] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic
    structure of graphene on SiO2,” Nano Lett., vol. 7, no. 6, pp. 1643–1648, 2007.
    [80] A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat.
    Mater., vol. 6, no. 11, pp. 858–861, 2007.
    [81] M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations
    in graphene,” Philos. Trans. R. Soc. London, Ser. A, vol. 366, no. 1863, pp. 195–
    204, 2008.
    [82] R. C. Thompson-Flagg, M. J. B. Moura, and M. Marder, “Rippling of graphene,”
    Europhys. Lett., vol. 85, no. 4, p. 46002, 2009.
    88
    參考文獻
    [83] I. S. Terekhov, A. I. Milstein, V. N. Kotov, and O. P. Sushkov, “Screening of
    coulomb impurities in graphene,” Phys. Rev. Lett., vol. 100, no. 7, p. 076803, 2008.
    [84] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, “Charge inhomogeneities due to
    smooth ripples in graphene sheets,” Phys. Rev. B, vol. 76, no. 16, p. 165409, 2007.
    [85] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in
    graphene,” EPJ B, vol. 51, no. 2, pp. 157–160, 2006.
    [86] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless
    Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
    [87] C.-J. Shih, G. L. C. Paulus, Q. H. Wang, Z. Jin, D. Blankschtein, and M. S. Strano,
    “Understanding surfactant/graphene interactions using a graphene field effect transistor:
    relating molecular structure to hysteresis and carrier mobility,” Langmuir,
    vol. 28, no. 22, pp. 8579–8586, 2012.
    [88] J. H. Bardarson, J. Tworzydlo, P. Brouwer, and C. Beenakker, “Demonstration of
    one-parameter scaling at the dirac point in graphene,” in APS Meeting Abstracts,
    vol. 1, p. 29004, 2008.
    [89] H. Suzuura and T. Ando, “Crossover from symplectic to orthogonal class in a twodimensional
    honeycomb lattice,” Phys. Rev. Lett., vol. 89, no. 26, pp. 266603–
    266603, 2002.
    [90] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused
    by water molecules in carbon nanotube field-effect transistors,” Nano Lett., vol. 3,
    no. 2, pp. 193–198, 2003.
    [91] Z. Zhang, H. Xu, H. Zhong, and L.-M. Peng, “Direct extraction of carrier mobility
    in graphene field-effect transistor using current-voltage and capacitance-voltage
    measurements,” Appl. Phys. Lett., vol. 101, no. 21, p. 213103, 2012.
    [92] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial
    charge inhomogeneity in graphene,” Nat. Phys., vol. 5, no. 10, pp. 722–726, 2009.
    [93] J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of
    graphene,” Nat. Nanotechnol., vol. 4, no. 8, pp. 505–509, 2009.
    89
    參考文獻參考文獻
    [94] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–
    phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143,
    no. 1, pp. 47–57, 2007.
    [95] L. Malard, M. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy
    in graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009.
    [96] R. Saito, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A.
    Pimenta, “Probing phonon dispersion relations of graphite by double resonance
    raman scattering,” Phys. Rev. Lett., vol. 88, no. 2, pp. 027401–027401, 2002.
    [97] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel,
    L. Colombo, and R. S. Ruoff, “Large-area graphene single crystals grown by lowpressure
    chemical vapor deposition of methane on copper,” J. Am. Chem. Soc.,
    vol. 133, no. 9, pp. 2816–2819, 2011.
    [98] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo,
    and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent
    conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
    [99] T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim, and B. J. Cho, “Direct
    measurement of adhesion energy of monolayer graphene as-grown on copper and
    its application to renewable transfer process,” Nano Lett., vol. 12, no. 3, pp. 1448–
    1452, 2012.
    [100] Z. Xu and M. J. Buehler, “Interface structure and mechanics between graphene
    and metal substrates: a first-principles study,” J. Phys.: Condens. Matter, vol. 22,
    no. 48, p. 485301, 2010.
    [101] L.-C. Chiang, “The research about microetching efficiency in different parameters
    and methods of sulfuric acid and hydrogen peroxide,” National Taipei University
    of Technology master’s thesis, 2007.
    [102] H. S. Wahab, S. H. Ali, and A. M. Abdul Hussein, “Adsorption of H2O,CO2,O2,Ti
    and Cu on graphene: A molecular modeling approach.,” International Journal of
    Electrical & Computer Sciences, vol. 12, no. 6, 2012.
    [103] Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen,
    “The effect of vacuum annealing on graphene,” J. Raman Spectrosc., vol. 41, no. 5,
    pp. 479–483, 2010.
    90
    參考文獻
    [104] S. Hertel, F. Kisslinger, J. Jobst, D. Waldmann, M. Krieger, and H. B. Weber, “Current
    annealing and electrical breakdown of epitaxial graphene,” Appl. Phys. Lett.,
    vol. 98, no. 21, p. 212109, 2011.
    [105] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and
    P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, no. 2,
    p. 026803, 2008.
    [106] C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson,
    K. B. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling
    transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl.
    Phys. Lett., vol. 102, no. 2, p. 022101, 2013.
    [107] D.-Y. Wang, I. Huang, P.-H. Ho, S.-S. Li, Y.-C. Yeh, D.-W. Wang, W.-L. Chen,
    Y.-Y. Lee, Y.-M. Chang, C.-C. Chen, et al., “Clean-lifting transfer of large-area
    residual-free graphene films,” Adv. Mater., vol. 25, no. 32, pp. 4521–4526, 2013.
    [108] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A.
    Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its
    bilayer,” Phys. Rev. Lett., vol. 100, no. 1, p. 016602, 2008.
    [109] K. Nagashio, T. Nishimura, and A. Toriumi, “Estimation of residual carrier density
    near the dirac point in graphene through quantum capacitance measurement,” Appl.
    Phys. Lett., vol. 102, no. 17, p. 173507, 2013.
    [110] S. Adam and S. D. Sarma, “Boltzmann transport and residual conductivity in bilayer
    graphene,” Phys. Rev. B, vol. 77, no. 11, p. 115436, 2008.
    [111] Q. Li, E. Hwang, and S. D. Sarma, “Disorder-induced temperature-dependent transport
    in graphene: Puddles, impurities, activation, and diffusion,” Phys. Rev. B,
    vol. 84, no. 11, p. 115442, 2011.
    [112] J. Heo, H.-J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo,
    E. H. Hwang, and S. D. Sarma, “Nonmonotonic temperature dependent transport
    in graphene grown by chemical vapor deposition,” Phys. Rev. B, vol. 84, no. 3,
    p. 035421, 2011.
    [113] E. H. Hwang and S. D. Sarma, “Insulating behavior in metallic bilayer graphene:
    Interplay between density inhomogeneity and temperature,” Phys. Rev. B, vol. 82,
    no. 8, p. 081409, 2010.
    91
    參考文獻參考文獻
    [114] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperaturedependent
    transport in suspended graphene,” Phys. Rev. Lett., vol. 101, no. 9,
    p. 096802, 2008.
    [115] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
    T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality
    graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
    [116] R. Golizadeh-Mojarad and S. Datta, “Effect of contact induced states on minimum
    conductivity in graphene,” Phys. Rev. B, vol. 79, no. 8, p. 085410, 2009.
    [117] Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and
    D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat.
    Phys., vol. 4, no. 7, pp. 532–535, 2008.
    [118] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures
    by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805,
    2007.
    [119] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer,
    “Tuning the effective fine structure constant in graphene: Opposing effects of dielectric
    screening on short- and long-range potential scattering,” Phys. Rev. Lett.,
    vol. 101, no. 14, p. 146805, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE