簡易檢索 / 詳目顯示

研究生: 林宜玟
Lin, Yi-Wen
論文名稱: 鍺通道之鐵電環繞式閘極場效電晶體與互補式場效電晶體之研究
Study of Ge Channel Ferroelectric Gate-all-around Field-effect Transistor and Complementary Field-effect Transistor
指導教授: 吳永俊
Wu, Yung-Chun
侯福居
Hou, Fu-Ju
口試委員: 胡心卉
羅廣禮
巫勇賢
陳健群
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 147
中文關鍵詞: 高遷移率通道材料自發性摻雜鐵電負電容奈米線奈米薄片環繞式閘極場效電晶體超晶格互補式場效電晶體
外文關鍵詞: high-mobility channel material, self-induced, ferroelectric negative capacitance, nanowire, nanosheet, gate-all-around field-effect transistor (GAAFET), superlattice (SL), complementary field-effect transistor (CFET)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代科技的發展推動了5G、物聯網和人工智慧,對效能、功耗和速度的要求也愈加嚴格。技術節點持續微縮,物理限制和製程技術已成為主要挑戰。邏輯元件結構從鰭式演變為環繞式閘極,但僅靠縮短通道長度或減少氧化層厚度,已不足以提升效能和密度,甚至會導致元件失效。為應對這些挑戰,具負電容效應的氧化鉿基材料,因其改善次臨界斜率和降低功耗的優點而成為熱門研究。此外,具高介電常數的氧化層可增加閘極電容,並降低等效氧化層厚度,高載子遷移率材料則可提升驅動電流。為進一步提升電晶體密度,nFET與pFET垂直堆疊的互補式場效電晶體備受關注,此結構能顯著縮小元件尺寸並延續摩爾定律。本論文主要是遵循摩爾定律的發展,探討具高遷移率通道之鐵電負電容場效電晶體與互補式場效電晶體。本論文共可分成三個部分,(1)自發性鍺摻雜氧化鉿之鍺奈米線鐵電負電容環繞式閘極場效電晶體,以及鍺堆疊奈米線環繞式閘極場效電晶體,(2)使用高介電常數氧化層之鍺奈米薄片環繞式閘極場效電晶體,(3)鍺奈米線和矽鰭結構之互補式場效電晶體與方形鍺和菱形鍺奈米線結構之互補式場效電晶體。
    第1部份(第二至四章)為鍺奈米線環繞式閘極場效電晶體之研究。利用Ge在高溫下會解吸並摻入HfO2,形成具鐵電負電容性質的Ge摻雜HfO2薄膜(Ge:HfO2),並探討其在不同退火溫度下的變化。將此薄膜應用在奈米線環繞式閘極結構,其次臨界擺幅(SS)可低於物理極限60 mV/decade,具有高效能、低功耗的特性。接著探討鍺堆疊菱形奈米線環繞式閘極場效電晶體的元件特性,菱形結構具有良好的載子遷移率和較低的介面缺陷能態,堆疊的結構則可以減少寄生電容並增加驅動電流,並使用Sentaurus TCAD針對此結構進行模擬,得到其適用於3奈米以下的技術節點。此外,探討不同介面層形成方式以及HfO2和Al2O3的厚度對Ge:HfO2的影響,並將此薄膜應用在堆疊的奈米線結構,得到SS可低於60 mV/decade的特性。
    第2部份(第五章)設計每層厚度不同的超晶格氧化鉿/氧化鋯的薄膜(每層0.3奈米氧化鉿/0.3奈米氧化鋯、每層0.5奈米氧化鉿/0.5奈米氧化鋯、每層1奈米氧化鉿/1奈米氧化鋯),並使用電容去驗證其介電常數、極化,以及介面能態缺陷。比較這些特性後,使用每層厚度為0.3奈米氧化鉿/0.3奈米氧化鋯,作為鍺堆疊奈米薄片環繞式閘極場效電晶體的氧化層,以增加閘極電容並提升驅動電流。
    第3部分(第六至七章)提出並實際製作: 鍺奈米線在矽鰭上之互補式場效電晶體,以及方形鍺奈米線在菱形鍺奈米線上之互補式場效電晶體,皆使用單一金屬作為閘極。這兩種互補式場效電晶體皆相容於目前的技術平台,且可以簡化製程,展現出適用於1奈米技術節點的潛力。


    The development of modern technology has driven demand for 5G, the Internet of Things (IoT), and artificial intelligence (AI), resulting in increasingly stringent requirements for performance, power consumption, and speed. As technology nodes continue to scale down, physical limitations and process technology have become major challenges. The structure of logic devices has evolved from FinFETs to gate-all-around (GAA) FETs, but simply shortening the channel length or reducing the oxide thickness is insufficient to improve performance and density and may even result in device failure. To address these challenges, hafnium oxide-based materials with negative capacitance effects have become a popular research focus due to their advantages in improving the subthreshold slope and reducing power consumption. Additionally, gate oxides with high dielectric constants can increase gate capacitance and reduce the equivalent oxide thickness, while materials with high carrier mobility can enhance the drive current. To further increase transistor density, vertically stacked nFET and pFET complementary field-effect transistors (CFETs) attract attention, as this structure can significantly reduce device size and extend Moore's Law. This dissertation primarily aims to extend Moore's Law by investigating ferroelectric (Fe) negative capacitance field-effect transistors (NCFETs) and CFETs with high-mobility channel materials. The dissertation is divided into three parts: (1) Ge nanowire (NW) ferroelectric negative capacitance GAAFET with self-induced Ge doped HfO2 and Ge stacked diamond-shaped NWs GAAFETs, (2) Ge stacked nanosheets GAAFET with high dielectric constant gate oxide, and (3) Ge NW on Si Fin CFET and Ge rectangle NW on Ge diamond NW CFET.
    The first part (Chapters 2 to 4) focuses on the study of Ge NW GAAFET. It investigates Ge desorption and incorporation into HfO2 at high temperatures to form a ferroelectric negative capacitance Ge-doped HfO2 (Ge:HfO2) thin film, and explores this phenomenon at different annealing temperatures. The Ge:HfO2/Al2O3 as the gate stack was then applied to a Ge NW Fe-GAAFET. The device shows a steep subthreshold slope and a high ION/IOFF ratio. Next, the stacked diamond-shaped Ge NWs GAAFET was investigated. The diamond structure provides excellent carrier mobility and lower interface trap density, while the stacked structure minimizes parasitic capacitance and increases the drive current. Sentaurus TCAD simulations demonstrate the potential of this structure for sub-3nm technology node logic applications. Further investigations explore the influence of different interfacial layer formation methods and the thicknesses of HfO2 and Al2O3 on the self-induced ferroelectric Ge:HfO2 thin film. The optimized conditions were applied to the stacked NWs structure and achieved SS below 60 mV/decade.
    The second part (Chapter 5) presents the design of HfO2/ZrO2 superlattice (SL) with varying layer thicknesses (0.3-nm HfO2/0.3-nm ZrO2, 0.5-nm HfO2/0.5-nm ZrO2, 1-nm HfO2/1-nm ZrO2). Capacitors were used to evaluate the dielectric constant, polarization, and interface trap density. After comparing these properties, the 0.3-nm HfO2/0.3-nm ZrO2 SL was selected as the gate stack for the Ge stacked nanosheets GAAFET to increase the gate capacitance and enhance the drive current.
    The third part (Chapters 6 to 7) proposes and experimentally fabricates the self-aligned stacked Ge NW pGAAFET on Si nFinFET of single-gate CFET and the self-aligned stacked hetero-oriented p-type Ge rectangle NW GAAFET on n-type Ge diamond NW GAAFET of single-gate CFET. Both CFETs are fully compatible with current Si technology platforms and can simplify the fabrication process, demonstrating the potential for scaling toward the N1 node.

    中 文 摘 要 i Abstract iii Acknowledgment vi Contents vii List of Tables xi List of Figures xii Chapter 1 Introduction 1 1.1 Challenges of Moore's Law and Opportunities 1 1.2 High mobility channel materials 4 1.3 Evolution of Transistor Architecture 7 1.3.1 Multi-Gate Field-Effect Transistor 10 1.3.2 Complementary Field-Effect Transistor 12 1.4 Logic Applications of Hafnium Oxide Based Materials 14 1.4.1 Ferroelectric Negative Capacitance (NC) Field-Effect Transistor 15 1.4.2 Higher Dielectric constant of Superlattice (SL) HfO2/ZrO2 21 1.5 Organization of the Dissertation 26 1.6 References 28 Chapter 2 Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor 36 2.1 Motivation and Literature Review 36 2.2 Experimental 38 2.3 Results and Discussion 40 2.4 Summary 47 2.5 References 48 Chapter 3 Tightly Stacked 3D Diamond-Shaped Ge Nanowire Gate-All-Around FETs With Superior nFET and pFET Performance 53 3.1 Motivation and Literature Review 53 3.2 Experimental 55 3.3 Results and Discussion 57 3.4 Summary 64 3.5 References 65 Chapter 4 Self-Induced Ge-Doped HfO2 Applied to Ge Stacked Nanowires Ferroelectric Gate-All-Around Field-Effect Transistor with Steep Subthreshold Slope Under O3 Treatment with GeO2 as Interfacial Layer 70 4.1 Motivation and Literature Review 70 4.2 Experimental 72 4.3 Results and Discussion 75 4.3.1 Characteristic of self-induced Ge:HfO2 MFIS capacitors with three IL treatments 75 4.3.2 Ferroelectric effect applies on Ge stacked NWs GAAFET 78 4.4 Summary 80 4.5 References 81 Chapter 5 Using High Dielectric Constant HfO2/ZrO2 Superlattice Dielectrics to Enhance Ge Stacked Nanosheets Gate-All-Around Transistor Performance 87 5.1 Motivation and Literature Review 87 5.2 Experimental 88 5.3 Results and Discussion 91 5.4 Summary 96 5.5 References 97 Chapter 6 3-D Self-Aligned Stacked Ge Nanowire pGAAFET on Si nFinFET of Single Gate CFET 102 6.1 Motivation and Literature Review 102 6.2 Experimental 103 6.3 Results and Discussion 107 6.4 Simulation 112 6.5 Summary 115 6.6 References 116 Chapter 7 3-D Self-Aligned Stacked Ge Nanowires Complementary FET Featuring Single Gate Simple Process 122 7.1 Motivation and Literature Review 122 7.2 Experimental 124 7.3 Results and Discussion 127 7.4 Summary 132 7.5 References 133 Chapter 8 Conclusion 140 Curriculum Vitae 142 Publication List 143 Appendix 146

    [1.1] Intel. [Online]. Available: https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html#gs.8w3tiq.
    [1.2] International Roadmap for Devices and Systems (IRDS™) 2022 Edition. [Online]. Available: https://irds.ieee.org/editions/2022/irds%E2%84%A2-2022-packaging-integration.
    [1.3] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 21-39, 2008, doi: 10.1109/TED.2007.911034.
    [1.4] R. Pillarisetty, “Academic and industry research progress in germanium nanodevices,” Nature, vol. 479, pp. 324-328, 2011, doi: https://doi.org/10.1038/nature10678.
    [1.5] C.-T. Chung, C.-W. Chen, J.-C. Lin, C.-C. Wu, C.-H. Chien, and G.-L. Luo, “First Experimental Ge CMOS FinFETs Directly on SOI Substrate,” 2012 International Electron Devices Meeting, pp. 16.4.1-16.4.4, doi: 10.1109/IEDM.2012.6479054.
    [1.6] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon Device Scaling to the Sub-10-nm Regime,” Science, vol. 306, no. 5704, pp. 2057-2060, 2004, doi: 10.1126/science.1100731.
    [1.7] S. E. Thompson, R. S. Chau, T. Ghani, K. Mistry, S. Tyagi, and M. T. Bohr, “In Search of “Forever,” Continued Transistor Scaling One New Material at a Time,” IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 1, pp. 26-36, 2005, doi: 10.1109/TSM.2004.841816.
    [1.8] D. A. Antoniadis, I. Aberg, C. N. Chleirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt, “Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations,” IBM Journal of Research and Development, vol. 50, no. 4.5, pp. 363-376, July 2006, doi: 10.1147/rd.504.0363.
    [1.9] imec. [Online]. Available: https://www.imec-int.com/en/articles/smaller-better-faster-imec-presents-chip-scaling-roadmap.
    [1.10] N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillorn, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.-C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183.
    [1.11] APPLIED MATERIALS. [Online]. Available: https://www.appliedmaterials.com/us/en/semiconductor/markets-and-inflections/advanced-logic/backside-power.html.
    [1.12] imec. [Online]. Available: https://www.imec-int.com/en/articles/how-power-chips-backside.
    [1.13] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, 1974, doi: 10.1109/JSSC.1974.1050511.
    [1.14] I. Ferain, C. A. Colinge, and J.-P. Colinge, “Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors,” Nature, vol. 479, pp. 310-316, 2011, doi: https://doi.org/10.1038/nature10676.
    [1.15] G. Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu, M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen, K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang, W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H. Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, and S.M. Jang, “5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile SoC and High Performance Computing Applications,” 2019 International Electron Devices Meeting, pp. 36.7.1-36.7.4, doi: 10.1109/IEDM19573.2019.8993577.
    [1.16] J. Zhang, T. Ando, C. W. Yeung, M. Wang, O. Kwon, R. Galatage, R. Chao, N. Loubet, B. K. Moon, R. Bao, R. A. Vega, J. Li, C. Zhang, Z. Liu, M. Kang, X. Miao, J. Wang, S. Kanakasabapathy, V. S Basker, H. Jagannathan, and T. Yamashita, “High-k metal gate fundamental learning and multi-Vt options for stacked nanosheet gate-all-around transistor,” 2017 IEEE International Electron Devices Meeting, pp. 22.1.1-22.1.4, doi: 10.1109/IEDM.2017.8268438.
    [1.17] Y.M. Lee, M.H. Na, A. Chu, A. Young, T. Hook, L. Liebmann, E.J. Nowak, S.H. Baek, R. Sengupta, H. Trombley, and X. Miao, “Accurate performance evaluation for the horizontal nanosheet standard-cell design space beyond 7nm technology,” 2017 IEEE International Electron Devices Meeting, pp. 29.3.1-29.3.4, doi: 10.1109/IEDM.2017.8268474.
    [1.18] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, M.C. Holland, T. Vasen, A. Afzalian, E. Chen, S.K. Su, T.K. Chen, T.M. Shen, Z.Q. Wu, and C.H. Diaz, “Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs,” 2018 IEEE International Electron Devices Meeting, pp. 21.1.1-21.1.4, doi: 10.1109/IEDM.2018.8614577.
    [1.19] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” 2020 IEEE Symposium on VLSI Technology, p. TC1.2 , doi: 10.1109/VLSITechnology18217.2020.9265025.
    [1.20] J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi, A. Mallik, H. Mertens, S. Demuynck, T. H. Bao, A. Veloso, N. Horiguchi, A. Mocuta, D. Mocuta, and J. Boemmels, “The Complementary FET (CFET) for CMOS scaling beyond N3,” 2018 IEEE Symposium on VLSI Technology, pp. 141-142 , doi: 10.1109/VLSIT.2018.8510618.
    [1.21] C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rachmady, I.-C. Tung, N. Thomas, U. Alaan, R. Paul, N. Kabir, B. Krist, A. Oni, M. Mehta, M. Harper, P. Nguyen, R. Keech, S. Vishwanath, K. L. Cheong, J. S. Kang, A. Lilak, M. Metz, S. Clendenning, B. Turkot, R. Schenker, H. J. Yoo, M. Radosavljevic, and J. Kavalieros, “3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling,” 2020 IEEE International Electron Devices Meeting, pp. 20.6.1–20.6.4, doi: 10.1109/IEDM13553.2020.9372066.
    [1.22] M. Radosavljević, C.-Y. Huang, R. Galatage, M. F. Qayyum, J. A. Wiedemer, E. Clinton, D. Bennett, H. Ryu, N. K. Thomas, P. Morrow, T. Michaelos, R. Nahm, N. Briggs, A. Roy, C. C. Kuo, S. Atanasov, S. Ghose, N. Zussblatt, N. Kumar, D. Unluer, M. Beasley, J. M. Tan, L. H. Tan, M. Elkins, S. Cekli, R. Hermann, L. Shoer, M. A. El Qader, U. Desai, T. Edwards, P. Prasad, J. Armstrong, M. Ghosh, Y.-A. Liao, V. Kapinus, D. Dixit, M. K. Harper, P. Tran, K. L. Cheong, A. Fatehi, A. A. Oni, N. Franco, B. J. Krist, M. V. Metz, G. Dewey, R. Schenker, and M. J. Kobrinsky, “Demonstration of a Stacked CMOS Inverter at 60nm Gate Pitch with Power Via and Direct Backside Device Contacts,” 2023 IEEE International Electron Devices Meeting, doi: 10.1109/IEDM45741.2023.10413678.
    [1.23] J. Park, W. Kim, S. Park, J. Yun, K. Hwang, J. Yang, D. Kim, J. W. Jeong, C. Yun, J. Bae, J. Park, S. Park, W. Huh, D. Huh, S. Yang, J. Lee, J. Seo, A. Kim, K. Oh, D. Yoo, B. J. Kuh, D. Ha, Y. G. Shin, and J. Song, “First demonstration of 3-dimensional stacked FET with top/bottom source-drain isolation and stacked n/p metal gate,” 2023 IEEE International Electron Devices Meeting, , doi: 10.1109/IEDM45741.2023.10413694.
    [1.24] S. Liao, L. Yang, T.K. Chiu, W.X. You, T.Y. Wu, K.F. Yang, W.Y. Woon, W.D. Ho, Z.C. Lin, H.Y. Hung, J.C. Huang, S.T. Huang, M.C. Tsai, C.L. Yu, S.H. Chen, K.K. Hu, C.C. Shih, Y.T. Chen, C.Y. Liu, H.Y. Lin, C.T. Chung, L. Su, C.Y. Chou, Y.T. Shen, C.M. Chang, Y.T. Lin, M.Y. Lin, W.C. Lin, B.H. Chen, C.S. Hou, F. Lai, X. Chen, J. Wu, C.K. Lin, Y.K. Cheng, H.T. Lin, Y.C. Ku, S.S. Lin, L.C. Lu, S.M. Jang, and M. Cao, “Complementary Field-Effect Transistor (CFET) Demonstration at 48nm Gate Pitch for Future Logic Technology Scaling,” 2023 IEEE International Electron Devices Meeting, doi: 10.1109/IEDM45741.2023.10413672.
    [1.25] M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” Journal of Materials Chemistry C, 5, pp. 4677-4690, 2017, doi: https://doi.org/10.1039/C7TC01200D.
    [1.26] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., 99, p. 102903, 2011, doi: https://doi.org/10.1063/1.3634052.
    [1.27] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters, vol. 8, no. 2, pp. 405-410, 2008, doi: https://doi.org/10.1021/nl071804g.
    [1.28] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, U.K., 2009) 2nd ed., p. 165.
    [1.29] M. Kobayashi, “A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor,” Applied Physics Express, 11, p. 110101, 2018, doi: 10.7567/APEX.11.110101.
    [1.30] K. Jang, T. Saraya, M. Kobayashi, and T. Hiramoto, “Ion /Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2,” Solid State Electron, 136, pp. 60-67, 2017, doi: https://doi.org/10.1016/j.sse.2017.06.011.
    [1.31] Muhammad A. Alam, “A Tutorial Introduction to Negative Capacitor Field Effect Transistors,” 2015/12/03, https://nanohub.org/resources/23157/about.
    [1.32] S. S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu, Y.-H. Liao, M. San Jose, J. Gomez, W. Chakraborty, W. Li, J.-H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. Ik Suh, W.-T. Koo, K.-J. Nam, D. J. Jung, W.-B. Song, C.-H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu, and S. Salahuddin, “Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors,” Nature, 604, pp. 65-71, 2022, doi: https://doi.org/10.1038/s41586-022-04425-6.
    [1.33] D. Das, B. Buyantogtokh, V. Gaddam, and S. Jeon, “Sub 5 Å-EOT HfₓZr1–xO₂ for Next-Generation DRAM Capacitors Using Morphotropic Phase Boundary and High-Pressure (200 atm) Annealing With Rapid Cooling Process,” IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 103-108, 2022, doi: 10.1109/TED.2021.3131403.
    [1.34] M. Jung, V. Gaddam, and S. Jeon, “A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology,” Nano Convergence, 9, 44, 2022, doi: https://doi.org/10.1186/s40580-022-00333-7.
    [2.1] M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs,” in IEDM Tech. Dig., Dec. 2016, pp. 12.1.1–12.1.4, doi: 10.1109/IEDM.2016.7838400.
    [2.2] J. Íñiguez, P. Zubko, I. Luk'yanchuk, and A. Cano, “Ferroelectric negative capacitance,” Nat. Rev. Mater., 4, pp. 243-256, 2019, doi: https://doi.org/10.1038/s41578-019-0089-0.
    [2.3] M.-J. Tsai, P.-J. Chen, C.-C. Hsu, D.-B. Ruan, F.-J. Hou, P.-Y. Peng, and Y.-C. Wu, “Atomic-Level Analysis of Sub-5-nm-Thick Hf0.5Zr0.5O2 and Characterization of Nearly Hysteresis-Free Ferroelectric FinFET,” IEEE Electron Device Lett., vol. 40, no. 8, pp. 1233–1236, 2019, doi: https://doi.org/10.1109/LED.2019.2922239.
    [2.4] D. Kwon, S. Cheema, Y.-K. Lin, Y.-H. Liao, K. Chatterjee, A. J. Tan, C. Hu, and S. Salahuddin, “Near Threshold Capacitance Matching in a Negative Capacitance FET With 1 nm Effective Oxide Thickness Gate Stack,” IEEE Electron Device Lett., vol. 41, no. 1, pp. 179–182, 2020, doi: https://doi.org/10.1109/LED.2019.2951705.
    [2.5] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, and T. Mikolajick, “Stabilizing the ferroelectric phase in doped hafnium oxide,” J. Appl. Phys., 118, 072006, 2015, doi: https://doi.org/10.1063/1.4927805.
    [2.6] L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, “Kinetic pathway of the ferroelectric phase formation in doped HfO2 films,” J. Appl. Phys., 122, 124104, 2017, doi: https://doi.org/10.1063/1.5003918.
    [2.7] S.-T. Fan, Y.-W. Chen, and C. W. Liu, “Strain effect on the stability in ferroelectric HfO2 simulated by first-principles calculations,” J. Phys. D, 53, 23LT01, 2020, doi: https://doi.org/10.1088/1361-6463/ab7fd4.
    [2.8] T. S. Böscke, S. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxide,” Appl. Phys. Lett., 99, 112904, 2011, doi: https://doi.org/10.1063/1.3636434.
    [2.9] P. Buragohain, A. Erickson, P. Kariuki, T. Mittmann, C. Richter, P. D. Lomenzo, H. Lu, T. Schenk, T. Mikolajick, U. Schroeder, and A. Gruverman, “Fluid Imprint and Inertial Switching in Ferroelectric La:HfO2 Capacitors,” ACS Appl. Mater. Interfaces, 11, pp. 35115–35121, 2019, doi: https://doi.org/10.1021/acsami.9b11146.
    [2.10] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,” Adv. Funct. Mater., 22, pp. 2412–2417, 2012, doi: https://doi.org/10.1002/adfm.201103119.
    [2.11] X. Wang, D. Zhou, S. Li, X. Liu, P. Zhao, N. Sun, F. Ali, and J. Wang, “Ferroelectric yttrium doped hafnium oxide films from all-inorganic aqueous precursor solution,” Ceram. Int., 44, pp. 13867–13872, 2018, doi: https://doi.org/10.1016/j.ceramint.2018.04.233.
    [2.12] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., 12, pp. 4318–4323, 2012, doi: https://doi.org/10.1021/nl302049k.
    [2.13] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. D. Kim, and C. S. Hwang, “Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer,” Appl. Phys. Lett., 105, 192903, 2014, doi: https://doi.org/10.1063/1.4902072.
    [2.14] M. Hoffmann, F. P. G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, and T. Mikolajick, “Unveiling the double-well energy landscape in a ferroelectric layer,” Nature, 565, pp. 464–467, 2019, doi: .https://doi.org/10.1038/s41586-018-0854-z.
    [2.15] M. Hoffmann, B. Max, T. Mittmann, U. Schroeder, S. Slesazeck, and T. Mikolajick, “Demonstration of High-speed Hysteresis-free Negative Capacitance in Ferroelectric Hf0.5Zr0.5O2,” in IEDM Tech. Dig., Dec. 2018, pp. 31.6.1–31.6.4, doi: 10.1109/IEDM.2018.8614677.
    [2.16] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 335–341, 2012, doi: https://doi.org/10.1109/TED.2011.2176495.
    [2.17] C.-L. Chu, K. Wu, G.-L. Luo, B.-Y. Chen, S.-H. Chen, W.-F. Wu, and W.-K. Yeh, “Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1133–1136, 2018, doi: https://doi.org/10.1109/LED.2018.2850366.
    [2.18] H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge Nanowire CMOS Devices and Circuits for Ultimate Scaling,” IEEE Trans. Electron Devices, vol. 63, no. 8, pp. 3049–3057, 2016, doi: https://doi.org/10.1109/TED.2016.2581862.
    [2.19] H. Arimura, G. Eneman, E. Capogreco, L. Witters, A. D. Keersgieter, P. Favia, C. Porret, A. Hikavyy, R. Loo, H. Bender, L.-Å. Ragnarsson, J. Mitard, N. Collaert, D. Mocuta, and N. Horiguchi, “Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET,” in IEDM Tech. Dig., Dec. 2018, pp. 21.2.1–21.2.4, doi: 10.1109/IEDM.2018.8614712.
    [2.20] E. Capogreco, L. Witters, H. Arimura, F. Sebaai, C. Porret, A. Hikavyy, R. Loo, A. P. Milenin, G. Eneman, P. Favia, H. Bender, K. Wostyn, E. D. Litta, A. Schulze, C. Vrancken, A. Opdebeeck, J. Mitard, R. Langer, F. Holsteyns, N. Waldron, K. Barla, V. D. Heyn, D. Mocuta, and N. Collaert, “First Demonstration of Vertically Stacked Gate-All-Around Highly Strained Germanium Nanowire pFETs,” IEEE Trans. Electron Devices, vol. 65, no. 11, pp. 5145–5150, 2018, doi: https://doi.org/10.1109/TED.2018.2871595.
    [2.21] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, Y.-C. Wu, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, and W.-K. Yeh, “Ge FinFET CMOS Inverters With Improved Channel Surface Roughness by Using In-Situ ALD Digital O3 Treatment,” IEEE J. Electron Devices Soc., vol. 6, pp. 1227–1232, 2018, doi: https://doi.org/10.1109/JEDS.2018.2878929.
    [2.22] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference,” Thin Solid Films, vol. 369, pp. 289–292, 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6.
    [2.23] C.-J. Su, Y.-T Tang, Y.-C. Tsou, P.-J. Sung, F.-J. Hou, C.-J. Wang, S.-T. Chung, C.-Y. Hsieh, Y.-S. Yeh, F.-K. Hsueh, K.-H. Kao, S.-S. Chuang, C.-T. Wu, T.-Y. You, Y.-L. Jian, T.-H. Chou, Y.-L. Shen, B.-Y. Chen, G.-L. Luo, T.-C. Hong, K.-P. Huang, M.-C. Chen, Y.-J. Lee, T.-S. Chao, T.-Y. Tseng, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Nano-scaled Ge FinFETs with low temperature ferroelectric HfZrOx on specific interfacial layers exhibiting 65% S.S. reduction and improved ION,” in Proc. IEEE Symp. VLSI Technol., Jun. 2017, pp. T152–T153, doi: 10.23919/VLSIT.2017.7998159.
    [2.24] J. F. Ihlefeld, in Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, A Volume in Woodhead Publishing Series in Electronic and Optical Materials Book, edited by U. Schroeder, C. S. Hwang, and H. Funakubo (Woodhead Publishing, 2019), pp. 1–24.
    [2.25] J. D. Anderson, J. Merkel, D. Macmahon, and S. K. Kurinec, “Evaluation of Si:HfO2 Ferroelectric Properties in MFM and MFIS Structures,” IEEE J. Electron Devices Soc., vol. 6, pp. 525–534, 2018, doi: https://doi.org/10.1109/JEDS.2018.2826978.
    [2.26] M. Kobayashi and T. Hiramoto, “On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film,” AIP Adv., 6, 025113, 2016, doi: https://doi.org/10.1063/1.4942427.
    [3.1] H. Mertens, R. Ritzenthaler, V. Pena, G. Santoro, K. Kenis, A. Schulze, E. D. Litta, S. A. Chew, K. Devriendt, T. Chiarella, S. Demuynck, D. Yakimets, D. Jang, A. Spessot, G. Eneman, A. Dangol, P. Lagrain, H. Bender, S. Sun, M. Korolik, D. Kioussis, M. Kim, K-.H. Bu, S. C. Chen, M. Cogorno, J. Devrajan, J. Machillot, N. Yoshida, N. Kim, K. Barla, D. Mocuta, and N. Horiguchi, “Vertically Stacked Gate-All-Around Si Nanowire Transistors: Key Process Optimizations and Ring Oscillator Demonstration,” in IEDM Tech. Dig., Dec. 2017, pp. 37.4.1-37.4.4, doi: 10.1109/IEDM.2017.8268511.
    [3.2] S. Barraud, V. Lapras, B. Previtali, M. P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J. M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J. C. Barbé, M. Vinet, and T. Ernst, “Performance and Design Considerations for Gate-All-Around Stacked-NanoWires FETs,” in IEDM Tech. Dig., Dec. 2017, pp. 29.2.1-29.2.4, doi: 10.1109/IEDM.2017.8268473.
    [3.3] R. Ritzenthaler, H. Mertens, V. Pena, G. Santoro, A. Chasin, K. Kenis, K. Devriendt, G. Mannaert, H. Dekkers, A. Dangol, Y. Lin, S. Sun, Z. Chen, M. Kim, J. Machillot, J. Mitard, N. Yoshida, N. Kim, D. Mocuta, and N. Horiguchi, “Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors with Reduced Vertical Nanowires Separation, New Work Function Metal Gate Solutions, and DC/AC Performance Optimization,” in IEDM Tech. Dig., Dec. 2018, pp. 21.5.1-21.5.4, doi: 10.1109/IEDM.2018.8614528.
    [3.4] C.-T. Tu, Y.-S. Huang, F.-L. Lu, H.-H. Liu, C.-Y. Lin, Y.-C. Liu, and C. W. Liu, “First Vertically Stacked Tensily Strained Ge0.98Si0.02 nGAAFETs with No Parasitic Channel and LG=40nm Featuring Record ION=48μA at VOV=VDS=0.5V and Record Gm,max(μS/μm)/SSSAT(mV/dec) = 8.3 at VDS=0.5V,” in IEDM Tech. Dig., Dec. 2019, pp. 29.3.1-29.3.4, doi: 10.1109/IEDM19573.2019.8993537.
    [3.5] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, doi: 10.1109/VLSITechnology18217.2020.9265025.
    [3.6] Y. M. Lee, M. H. Na, A. Chu, A. Young, T. Hook, L. Liebmann, E. J. Nowak, S. H. Baek, R. Sengupta, H. Trombley, and X. Miao, “Accurate Performance Evaluation for the Horizontal Nanosheet Standard-Cell Design Space Beyond 7nm Technology,” in IEDM Tech. Dig., Dec. 2017, pp. 29.3.1-29.3.4, doi: 10.1109/IEDM.2017.8268474.
    [3.7] C.-L. Chu, K. Wu, G.-L. Luo, B.-Y. Chen, S.-H. Chen, W.-F. Wu, and W.-K. Yeh, “Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1133-1136, Aug. 2018, doi: 10.1109/LED.2018.2850366.
    [3.8] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, M.C. Holland, T. Vasen, A. Afzalian, E. Chen, S.K. Su, T.K. Chen, T.M. Shen, Z.Q. Wu, and C.H. Diaz, “Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs,” in IEDM Tech. Dig., Dec. 2018, pp. 21.1.1-21.1.4, doi: 10.1109/IEDM.2018.8614577.
    [3.9] H. Arimura, G. Eneman, E. Capogreco, L. Witters, A. De Keersgieter, P. Favia, C. Porret, A. Hikavyy, R. Loo, H. Bender, L.-Å. Ragnarsson, J. Mitard, N. Collaert, D. Mocuta, and N. Horiguchi, “Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET,” in IEDM Tech. Dig., Dec. 2018, pp. 21.2.1-21.2.4, doi: 10.1109/IEDM.2018.8614712.
    [3.10] Y.-J. Lee, F.-J. Hou, S.-S. Chuang, F.-K. Hsueh, K.-H. Kao, P.-J. Sung, W.-Y. Yuan, J.-Y. Yao, Y.-C. Lu, K.-L. Lin, C.-T. Wu, H.-C. Chen, B.-Y. Chen, G.-W. Huang, H. J. H. Chen, J.-Y. Li, Y. Li, S. Samukawa, T.-S. Chao, T.-Y. Tseng, W.-F. Wu, T.-H. Hou, and W.-K. Yeh, “Diamond-shaped Ge and Ge0.9Si0.1 Gate-All-Around Nanowire FETs with Four {111} Facets by Dry Etch Technology,” in IEDM Tech. Dig., Dec. 2015, pp. 15.1.1-15.1.4, doi: 10.1109/IEDM.2015.7409701.
    [3.11] P. Feng, S.-C. Song, G. Nallapati, J. Zhu, J. Bao, V. Moroz, M. Choi, X.-W. Lin, Q. Lu, B. Colombeau, N. Breil, M. Chudzik, and C. Chidambaram, "Comparative Analysis of Semiconductor Device Architectures for 5-nm Node and Beyond," IEEE Electron Device Lett., vol. 38, no. 12, pp. 1657-1660, Dec. 2017, doi: 10.1109/LED.2017.2769058.
    [3.12] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Interface-Engineered Ge (100) and (111), N- and P-FETs with High Mobility,” in IEDM Tech. Dig., Dec. 2007, pp. 723-726, doi: 10.1109/IEDM.2007.4419048.
    [3.13] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, and W.-K. Yeh, “Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-Situ ALD Digital O3 Treatment,” in Proc. IEEE 2nd Electron Devices Technol. Manuf. Conf. (EDTM), March 2018, pp. 205-207, doi: 10.1109/EDTM.2018.8421457.
    [3.14] F.-J. Hou, P.-J. Sung, F.-K. Hsueh, C.-T. Wu, Y.-J. Lee, Y. Li, S. Samukawa, and T.-H. Hou, “Suspended Diamond-Shaped Nanowire With Four {111} Facets for High-Performance Ge Gate-All-Around FETs,” IEEE Trans. Electron Devices, vol. 63, no. 10, pp. 3837-3843, Oct. 2016, doi: 10.1109/TED.2016.2597317.
    [3.15] I-H. Wong, Y.-T. Chen, S.-H. Huang, W.-H. Tu, Y.-S. Chen, T.-C. Shieh, T.-Y. Lin, H.-S. Lan, and C.W. Liu, “In-situ Doped and Tensily Stained Ge Junctionless Gate-all-around nFETs on SOI Featuring Ion=828μA/μm, Ion/Ioff ~1×105, DIBL=16-54 mV/V, and 1.4X External Strain Enhancement,” in IEDM Tech. Dig., Dec. 2014, pp. 9.6.1-9.6.4, doi: 10.1109/IEDM.2014.7047019.
    [3.16] Y.S Choi, T. Numata, T. Nishida, R. Harris, and S. E. Thompson, “Impact of mechanical stress on gate tunneling currents of germanium and silicon p-type metal-oxide-semiconductor field-effect transistors and metal gate work function,” J. Appl. Phys., vol. 103, 064510, 2008, doi: https://doi.org/10.1063/1.2838234.
    [3.17] X. Yu, J. Kang, M. Takenaka, and S. Takagi, “Experimental Study on Carrier Transport Properties in Extremely-Thin Body Ge-on-Insulator (GOI) p-MOSFETs with GOI Thickness down to 2 nm,” in IEDM Tech. Dig., Dec. 2015, pp. 2.2.1-2.2.4, doi: 10.1109/IEDM.2015.7409611.
    [3.18] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Behavior of Passivation Layers,” J. Electrochem. Soc., vol. 137, no. 11, pp. 3612-3626, Nov. 1990, doi: https://doi.org/10.1149/1.2086277.
    [3.19] Sentaurus TCAD Version 2016, Synopsys, Mountain View, CA, USA.
    [4.1] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett., 8, pp. 405-410, 2008, doi: https://doi.org/10.1021/nl071804g.
    [4.2] C.-J. Su, Y.-T Tang, Y.-C. Tsou, P.-J. Sung, F.-J. Hou, C.-J. Wang, S.-T. Chung, C.-Y. Hsieh, Y.-S. Yeh, F.-K. Hsueh, K.-H. Kao, S.-S. Chuang, C.-T. Wu, T.-Y. You, Y.-L. Jian, T.-H. Chou, Y.-L. Shen, B.-Y. Chen, G.-L. Luo, T.-C. Hong, K.-P. Huang, M.-C. Chen, Y.-J. Lee, T.-S. Chao, T.-Y. Tseng, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Nano-scaled Ge FinFETs with low temperature ferroelectric HfZrOx on specific interfacial layers exhibiting 65% S.S. reduction and improved ION,” in Proc. IEEE Symp. VLSI Technol., pp. T152-T153, 2017, doi: 10.23919/VLSIT.2017.7998159.
    [4.3] C.-J. Su, T.-C. Hong, Y.-C. Tsou, F.-J. Hou, P.-J. Sung, M.-S. Yeh, C.-C. Wan, K.-H. Kao, Y.-T. Tang, C.-H. Chiu, C.-J. Wang, S.-T. Chung, T.-Y. You, Y.-C. Huang, C.-T. Wu, K.-L. Lin, G.-L. Luo, K.-P. Huang, Y.-J. Lee, T.-S. Chao, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability,” in IEDM Tech. Dig., Dec. 2017, pp. 15.4.1-15.4.4, doi: 10.1109/IEDM.2017.8268396.
    [4.4] M. H. Lee, K.-T. Chen, C.-Y. Liao, S.-S. Gu, G.-Y. Siang, Y.-C. Chou, H.-Y. Chen, J. Le, R.-C. Hong, Z.-Y. Wang, S.-Y. Chen, P.-G. Chen, M. Tang, Y.-D. Lin, H.-Y. Lee, K.-S. Li, and C. W. Liu, “Extremely Steep Switch of Negative-Capacitance Nanosheet GAA-FETs and FinFETs,” in IEDM Tech. Dig., Dec. 2018, pp. 31.8.1-31.8.4, doi: 10.1109/IEDM.2018.8614510.
    [4.5] D. Kwon, K. Chatterjee, A. J. Tan, A. K. Yadav, H. Zhou, A. B. Sachid, R. dos Reis, C. Hu, and S. Salahuddin, “Improved Subthreshold Swing and Short Channel Effect in FDSOI n-Channel Negative Capacitance Field Effect Transistors,” IEEE Electron Device Lett., vol. 39, pp. 300-303, 2018, doi: 10.1109/LED.2017.2787063.
    [4.6] M.-J. Tsai, P.-J. Chen, C.-C. Hsu, D.-B. Ruan, F.-J. Hou, P.-Y. Peng, and Y.-C. Wu, “Atomic-Level Analysis of Sub-5-nm-Thick Hf0.5Zr0.5O2 and Characterization of Nearly Hysteresis-Free Ferroelectric FinFET,” IEEE Electron Device Lett., vol. 40, pp. 1233-1236, 2019, doi: 10.1109/LED.2019.2922239.
    [4.7] C.-J. Sun, S.-C. Yan, Y.-W. Lin, M.-J. Tsai, Y.-C Tsai, C.-P Chou, F.-J. Hou, G.-L. Luo, and Y.-C. Wu, “Comprehensive Study of Inversion and Junctionless Ge Nanowire Ferroelectric HfZrO Gate-All-Around FETs Featuring Steep Subthreshold Slope with Transient Negative Capacitance,” ECS J. Solid State Sci. Technol., 10, p. 065002, 2021, doi: 10.1149/2162-8777/ac04f8.
    [4.8] S.-C. Yan, C.-H. Wu, C.-J. Sun, Y.-W. Lin, Y.-J. Yao, and Y.-C. Wu, “Trench FinFET Nanostructure with Advanced Ferroelectric Nanomaterial HfZrO2 for Sub-60-mV/Decade Subthreshold Slope for Low Power Application,” Nanomaterials, 12, p. 2165, 2022, doi: https://doi.org/10.3390/nano12132165.
    [4.9] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, and T. Mikolajick, “Stabilizing the ferroelectric phase in doped hafnium oxide,” J. Appl. Phys., 118, p. 072006, 2015, doi: https://doi.org/10.1063/1.4927805.
    [4.10] L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, “Kinetic pathway of the ferroelectric phase formation in doped HfO2 films,” J. Appl. Phys., 122, p. 124104, 2017, doi: https://doi.org/10.1063/1.5003918.
    [4.11] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, “Record-high electron mobility in Ge n-MOSFETs exceeding Si universality,” in IEDM Tech. Dig., Dec. 2009, pp. 19.2.1-19.2.4, doi: 10.1109/IEDM.2009.5424323.
    [4.12] X. F. Li, X. J. Liu, W. Q. Zhang, Y. Y. Fu, A. D. Li, H. Li, and D. Wu, “Comparison of the interfacial and electrical properties of HfAlO films on Ge with S and GeO2 passivation,” Appl. Phys. Lett., 98, p. 162903, 2011, doi: https://doi.org/10.1063/1.3581051.
    [4.13] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, Y.-C. Wu, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, and W.-K. Yeh, “Ge FinFET CMOS Inverters With Improved Channel Surface Roughness by Using In-Situ ALD Digital O3 Treatment,” IEEE J. Electron Devices Soc., vol. 6, pp. 1227-1232, 2018, doi: 10.1109/JEDS.2018.2878929.
    [4.14] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference,” Thin Solid Films, vol. 369, pp. 289-292, 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6.
    [4.15] Y.-W. Lin, C.-J. Sun, H.-H. Chang, Y.-H. Huang, T.-Y. Yu, Y.-C. Wu, and F.-J. Hou, “Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor,” Appl. Phys. Lett., 117, p. 262109, 2020, doi: https://doi.org/10.1063/5.0029628.
    [4.16] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu., “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265025.
    [4.17] C.-T. Tu, Y.-S. Huang, C.-Y. Cheng, C.-E. Tsai, J.-Y. Chen, H.-Y. Ye, F.-L. Lu, and C. W. Liu, “Uniform 4-Stacked Ge0.9Sn0.1 Nanosheets Using Double Ge0.95Sn0.05 Caps by Highly Selective Isotropic Dry Etch,” IEEE Trans. Electron Devices, vol. 68, pp. 2071-2076, Apr. 2021, doi: 10.1109/TED.2021.3050430.
    [4.18] C.-L. Chu, J.-Y. Chang, P.-Y. Chen, P.-Y. Wang, S.-H. Hsu, and D. Chou, “Ge/Si multilayer epitaxy and removal of dislocations from Ge-nanosheet-channel MOSFETs,” Sci. Rep., 12, 959, 2022, doi: https://doi.org/10.1038/s41598-021-04514-y.
    [4.19] C.-L. Chu, S.-H. Hsu, W.-Y. Chang, G.-L. Luo, and S.-H. Chen, “Stacked SiGe nanosheets p-FET for Sub-3 nm logic applications,” Sci. Rep., 13, 9433, 2023, doi: https://doi.org/10.1038/s41598-023-36614-2.
    [4.20] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, M.C. Holland, T. Vasen, A. Afzalian, E. Chen, S.K. Su, T.K. Chen, T.M. Shen, Z.Q. Wu, and C.H. Diaz, “Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs,” in IEDM Tech. Dig., Dec. 2018, pp. 21.1.1-21.1.4, doi: 10.1109/IEDM.2018.8614577.
    [4.21] H. Arimura, G. Eneman, E. Capogreco, L. Witters, A. De Keersgieter, P. Favia, C. Porret, A. Hikavyy, R. Loo, H. Bender, L.-Å. Ragnarsson, J. Mitard, N. Collaert, D. Mocuta, and N. Horiguchi, “Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET,” in IEDM Tech. Dig., Dec. 2018, pp. 21.2.1-21.2.4, doi: 10.1109/IEDM.2018.8614712.
    [4.22] Y.-C. Liu, C.-T. Tu, C.-E. Tsai, B.-W. Huang, C.-Y. Cheng, S.-J. Chueh, J.-Y. Chen, and C. W. Liu, “Highly Stacked GeSi Nanosheets and Nanowires by Low-Temperature Epitaxy and Wet Etching,” IEEE Trans. Electron Devices, vol. 68, pp. 6599-6604, 2021, doi: 10.1109/TED.2021.3110838.
    [4.23] W.-J. Chen, Y.-C. Liu, Y.-W. Chen, Y.-R. Chen, H.-C. Lin, C.-T. Tu, B.-W. Huang, and C. W. Liu, “Extremely High-κ Hf0.2Zr0.8O2 Gate Stacks Integrated Into Eight Stacked Ge0.95Si0.05 Nanowires and Nanosheets nFETs to Boost ION,” IEEE Trans. Electron Devices, vol. 70, pp. 6673 – 6679, 2023, doi: 10.1109/TED.2023.3315685.
    [4.24] F.-J. Hou, P.-J. Sung, F.-K. Hsueh, C.-T. Wu, Y.-J. Lee, Y.-M Li, S. Samukawa, and T.-H. Hou, “Suspended Diamond-Shaped Nanowire With Four {111} Facets for High-Performance Ge Gate-All-Around FETs,” IEEE Trans. Electron Devices, vol. 63, pp. 3837-3843, 2016, doi: 10.1109/TED.2016.2597317.
    [4.25] C.-C. Li, K.-S. Chang-Liao, L.-J. Liu, T.-M. Lee, C.-H. Fu, T.-C. Chen, J.-W. Cheng, C.-C. Lu, and T.-K. Wang, “Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 509-511, 2014, doi: 10.1109/LED.2014.2310636.
    [5.1] T. N. Theis and H.-S. Philip Wong, “The End of Moore's Law: A New Beginning for Information Technology,” Computing in Science & Engineering, vol. 19, no. 2, pp. 41-50, Mar.-Apr. 2017, doi: 10.1109/MCSE.2017.29.
    [5.2] S. S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu, Y.-H. Liao, M. San Jose, J. Gomez, W. Chakraborty, W. Li, J.-H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. Ik Suh, W.-T. Koo, K.-J. Nam, D. J. Jung, W.-B. Song, C.-H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu, and S. Salahuddin, “Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors,” Nature, 604, pp. 65-71, 2022, doi: https://doi.org/10.1038/s41586-022-04425-6.
    [5.3] W. Li, L. C. Wang, S. S. Cheema, N. Shanker, C. Hu, and S. Salahuddin, “Enhancement in Capacitance and Transconductance in 90 nm nFETs with HfO2-ZrO2 Superlattice Gate Stack for Energy-efficient Cryo-CMOS,” in IEDM Tech. Dig., Dec. 2022, pp. 22.3.1–22.3.4, doi: 10.1109/IEDM45625.2022.10019496.
    [5.4] N. Shanker, L.-C. Wang, S. Cheema, W. Li, N. Choudhury, C. Hu, S. Mahapatra, and S. Salahuddin, “On the PBTI Reliability of Low EOT Negative Capacitance 1.8 nm HfO2-ZrO2 Superlattice Gate Stack on Lg=90 nm nFETs,” in Proc. IEEE Symp. VLSI Technol., Jun. 2022, pp. 421–422, doi: 10.1109/VLSITechnologyandCir46769.2022.9830440.
    [5.5] S. Oh, H. Jang, and H. Hwang, “Accurate Evaluation of High-k HZO/ZrO2 Films by Morphotropic Phase Boundary,” IEEE Electron Device Lett., vol. 45, no. 1, pp. 28–31, Jan. 2024, doi: 10.1109/LED.2023.3331001.
    [5.6] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, and C. S. Hwang, “Morphotropic Phase Boundary of Hf1–xZrxO2 Thin Films for Dynamic Random Access Memories,” ACS Appl. Mater. Interface, vol. 10, no. 49, pp. 42666–42673, Nov. 2018, doi: 10.1021/acsami.8b15576.
    [5.7] K. Ni, A. Saha, W. Chakraborty, H. Ye, B. Grisafe, J. Smith, G. B. Rayner, S. Gupta, and S. Datt, “Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-k dielectric near morphotropic phase boundary,” in IEDM Tech. Dig., Dec. 2019, pp. 7.4.1–7.4.4, doi: 10.1109/IEDM19573.2019.8993495.
    [5.8] D. Das and S. Jeon, “High-k HfxZr1-xO2 Ferroelectric Insulator by Utilizing High Pressure Anneal,” IEEE Trans. Electron Devices, vol. 67, no. 6, pp. 2489–2494, Jun. 2020, doi: 10.1109/TED.2020.2985635.
    [5.9] A. Kashir and H. Hwang, “Ferroelectric and Dielectric Properties of Hf0.5Zr0.5O2 Thin Film Near Morphotropic Phase Boundary,” Phys. Status Solidi A, vol. 218, p. 200819, 2021, doi: https://doi.org/10.1002/pssa.202000819.
    [5.10] S. Kim, S. H. Lee, M. J. Kim, W. S. Hwang, H. S. Jin, and B. J. Cho, “Method to Achieve the Morphotropic Phase Boundary in HfxZr1−xO2 by Electric Field Cycling for DRAM Cell Capacitor Applications,” IEEE Electron Device Lett., vol. 42, no. 4, pp. 517–520, Apr. 2021, doi: 10.1109/LED.2021.3059901.
    [5.11] N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.-C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare,“Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” in Proc. IEEE Symp. VLSI Technol., Jun. 2017, pp. T230–T231, doi: 10.23919/VLSIT.2017.7998183.
    [5.12] C.-L. Chu, K. Wu, G.-L. Luo, B.-Y. Chen, S.-H. Chen, W.-F. Wu, and W.-K. Yeh, “Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1133–1136, Aug. 2018, doi: 10.1109/LED.2018.2850366.
    [5.13] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265025.
    [5.14] R. Ritzenthaler, H. Mertens, G. Eneman, E. Simoen, E. Bury, P. Eyben, F. M. Bufler, Y. Oniki, B. Briggs, B.T. Chan, A. Hikavyy, G. Mannaert, B. Parvais, A. Chasin, J. Mitard, E. Dentoni Litta, S. Samavedam, and N. Horiguchi, “Comparison of Electrical Performance of Co-Integrated Forksheets and Nanosheets Transistors for the 2nm Technological Node and Beyond,” in IEDM Tech. Dig., Dec. 2021, pp. 26.2.1–26.2.4, doi: 10.1109/IEDM19574.2021.9720524.
    [5.15] C.-T. Tu, Y.-S. Huang, C.-Y. Cheng, C.-E. Tsai, J.-Y. Chen, H.-Y. Ye, F.-L. Lu, and C. W. Liu, “Uniform 4-Stacked Ge0.9Sn0.1 Nanosheets Using Double Ge0.95Sn0.05 Caps by Highly Selective Isotropic Dry Etch,” IEEE Trans. Electron Devices, vol. 68, no. 4, pp. 2071–2076, Apr. 2021, doi: 10.1109/TED.2021.3050430.
    [5.16] C.-L. Chu, S.-H. Hsu, W.-Y. Chang, G.-L. Luo, and S.-H. Chen, “Stacked SiGe nanosheets p-FET for Sub-3 nm logic applications,” Sci. Rep., 13, 9433, Jun. 2023, doi: https://doi.org/10.1038/s41598-023-36614-2.
    [5.17] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21–39, Jan. 2008, doi: 10.1109/TED.2007.911034.
    [5.18] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, Y.-C. Wu, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, and W.-K. Yeh, “Ge FinFET CMOS Inverters With Improved Channel Surface Roughness by Using In-Situ ALD Digital O3 Treatment,” IEEE J. Electron Devices Soc., vol. 6, pp. 1227–1232, Nov. 2018, doi: 10.1109/JEDS.2018.2878929.
    [5.19] C.-C. Li, K.-S. Chang-Liao, L.-J. Liu, T.-M. Lee, C.-H. Fu, T.-C. Chen, J.-W. Cheng, C.-C. Lu, and T.-K. Wang, “Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 509–511, May 2014, doi: 10.1109/LED.2014.2310636.
    [6.1] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Dec. 2000, doi: 10.1109/16.887014.
    [6.2] C-H. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens, V. Narayanan, B. Linder, H. Ho, A. Aiyar, E. Alptekin, J-J. An, M. Aquilino, R. Bao, V. Basker, N. Breil, M. Brodsky, W. Chang, L. Clevenger, D. Chidambarrao, C. Christiansen, D. Conklin, C. DeWan, H. Dong, L. Economikos, B. Engel, S. Fang, D. Ferrer, A. Friedman, A. Gabor, F. Guarin, X. Guan, M. Hasanuzzaman, J. Hong, D. Hoyos, B. Jagannathan, S. Jain, S-J. Jeng, J. Johnson, B. Kannan, Y. Ke, B. Khan, B. Kim, S. Koswatta, A. Kumar, T. Kwon, U. Kwon, L. Lanzerotti, H-K Lee, W-H. Lee, A. Levesque, W. Li, Z. Li, W. Liu, S. Mahajan, K. McStay, H. Nayfeh, W. Nicoll, G. Northrop, A. Ogino, C. Pei, S. Polvino, R. Ramachandran, Z. Ren, R. Robison, I. Saraf, V. Sardesai, S. Saudari, D. Schepis, C. Sheraw, S. Siddiqui, L. Song, K. Stein, C. Tran, H. Utomo, R. Vega, G. Wang, H. Wang, W. Wang, X. Wang, D. Wehelle-Gamage, E. Woodard, Y. Xu, Y. Yang, N. Zhan, K. Zhao, C. Zhu, K. Boyd, E. Engbrecht, K. Henson, E. Kaste, S. Krishnan, E. Maciejewski, H. Shang, N. Zamdmer, R. Divakaruni, J. Rice, S. Stiffler, and P. Agnello, “High performance 14nm SOI FinFET CMOS technology with 0.0174µm2 embedded DRAM and 15 levels of Cu metallization,” in IEDM Tech. Dig., Dec. 2014, pp. 3.8.1–3.8.3, doi: 10.1109/IEDM.2014.7046977.
    [6.3] R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser , N. Loubet , M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan , L. Liebmann, R. Chao , A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H.P. Amanapu, Z. Bi, J. Cha , H.-C. Chen, R. Conti , R. Galatage , O. Gluschenkov , V. Kamineni , K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff , J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu, and M. Khare, “A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels,” in IEDM Tech. Dig., Dec. 2016, pp. 2.7.1–2.7.4, doi: 10.1109/IEDM.2016.7838334.
    [6.4] S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst, “Performance and design considerations for gate-all-around stacked-NanoWires FETs,” in IEDM Tech. Dig., Dec. 2017, pp. 29.2.1–29.2.4, doi: 10.1109/IEDM.2017.8268473.
    [6.5] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, M.C. Holland, T. Vasen, A. Afzalian, E. Chen, S.K. Su, T.K. Chen, T.M. Shen, Z.Q. Wu, and C.H. Diaz, “Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs,” in IEDM Tech. Dig., Dec. 2018, pp. 21.1.1–21.1.4, doi: 10.1109/IEDM.2018.8614577.
    [6.6] H. Arimura, G. Eneman, E. Capogreco, L. Witters, A. De Keersgieter, P. Favia, C. Porret, A. Hikavyy, R. Loo, H. Bender, L.-Å. Ragnarsson, J. Mitard, N. Collaert, D. Mocuta, and N. Horiguchi, “Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET,” in IEDM Tech. Dig., Dec. 2018, pp. 21.2.1–21.2.4, doi: 10.1109/IEDM.2018.8614712.
    [6.7] H. Arimura, E. Capogreco, A. Vohra, C. Porret, R. Loo, E. Rosseel, A. Hikavyy, D. Cott, G. Boccardi, L. Witters, G. Eneman, J. Mitard, N. Collaert, and N. Horiguchi, “Toward high-performance and reliable Ge channel devices for 2 nm node and beyond,” in IEDM Tech. Dig., Dec. 2020, pp. 2.1.1–2.1.4, doi: 10.1109/IEDM13553.2020.9372007.
    [6.8] Y.-W. Lin, H.-H. Chang, Y.-H. Huang, C.-J. Sun, S.-C. Yan, S.-W. Lin, G.-L. Luo, C.-T. Wu, Y.-C. Wu, and Fu-Ju Hou, “Tightly Stacked 3D Diamond-Shaped Ge Nanowire Gate-All-Around FETs With Superior nFET and pFET Performance,” IEEE Electron Device Lett., vol. 42, no. 12, pp. 1727–1730, Dec. 2021, doi: 10.1109/LED.2021.3125059.
    [6.9] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-levels-stacked nanosheet GAA transistors for high performance computing,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1–2, doi: 10.1109/VLSITechnology18217.2020.9265025.
    [6.10] R. Ritzenthaler, H. Mertens, G. Eneman, E. Simoen, E. Bury, P. Eyben, F. M. Bufler, Y. Oniki, B. Briggs, B.T. Chan, A. Hikavyy, G. Mannaert, B. Parvais, A. Chasin, J. Mitard, E. Dentoni Litta, S. Samavedam, and N. Horiguchi, “Comparison of Electrical Performance of Co-Integrated Forksheets and Nanosheets Transistors for the 2nm Technological Node and Beyond,” in IEDM Tech. Dig., Dec. 2021, pp. 26.2.1–26.2.4, doi: 10.1109/IEDM19574.2021.9720524.
    [6.11] R. Bao, C. Durfee, J. Zhang, L. Qin, J. Rozen, H. Zhou, J. Li, S. Mukesh, S. Pancharatnam, K. Zhao, C. D. Adams, E. Leobandung, V. Narayanan, D. Guo, and H. Bu, “Critical Elements for Next Generation High Performance Computing Nanosheet Technology,” in IEDM Tech. Dig., Dec. 2021, pp. 26.3.1–26.3.4, doi: 10.1109/IEDM19574.2021.9720601.
    [6.12] J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi, A. Mallik, H. Mertens, S. Demuynck, T. Huynh Bao, A. Veloso, N. Horiguchi, A. Mocuta, D. Mocuta, and J. Boemmels, “The Complementary FET (CFET) for CMOS scaling beyond N3,” in Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 141–142, doi: 10.1109/VLSIT.2018.8510618.
    [6.13] C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rachmady, I.-C. Tung, N. Thomas, U. Alaan, R. Paul, N. Kabir, B. Krist, A. Oni, M. Mehta, M. Harper, P. Nguyen, R. Keech, S. Vishwanath, K. L. Cheong, J. S. Kang, A. Lilak, M. Metz, S. Clendenning, B. Turkot, R. Schenker, H. J. Yoo, M. Radosavljevic, and J. Kavalieros, “3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling,” in IEDM Tech. Dig., Dec. 2020, pp. 20.6.1–20.6.4, doi: 10.1109/IEDM13553.2020.9372066.
    [6.14] S. Subramanian, M. Hosseini, T. Chiarella, S. Sarkar, P. Schuddinck, B.T. Chan, D. Radisic, G. Mannaert, A. Hikavyy, E. Rosseel, F. Sebaai, A. Peter, T. Hopf, P. Morin, S. Wang, K. Devriendt, D. Batuk, G. T. Martinez, A. Veloso, E. Dentoni Litta, S. Baudot, Y. K. Siew, X. Zhou, B. Briggs, E. Capogreco, J. Hung, R. Koret, A. Spessot, J. Ryckaert, S. Demuynck, N. Horiguchi, and J. Boemmels, “First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1–2, doi: 10.1109/VLSITechnology18217.2020.9265073.
    [6.15] S.-W. Chang, P.-J. Sung, T-Y. Chu, D. D. Lu, C.-J. Wang, N.-C. Lin, C.-J. Su, S.-H. Lo, H.-F. Huang, J.-H. Li, M.-K. Huang, Y.-C. Huang, S.-T. Huang, H.-C. Wang, Y.-J. Huang, J.-Y. Wang, L.-W Yu, Y.-F. Huang, F.-K. Hsueh, C.-T. Wu, W. C.-Y. Ma, K.-H. Kao, Y.-J. Lee, C.-L. Lin, R.W. Chuang, K.-P. Huang, S. Samukawa, Y. Li, W.-H. Lee, T.-S. Chao, G.-W. Huang, W.-F. Wu, J.-Y. Li, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “First Demonstration of CMOS Inverter and 6T-SRAM Based on GAA CFETs Structure for 3D-IC Applications,” in IEDM Tech. Dig., Dec. 2019, pp. 11.7.1–11.7.4, doi: 10.1109/IEDM19573.2019.8993525.
    [6.16] T.-Z. Hong, W.-H. Chang, A. Agarwal, Y.-T. Huang, C.-Y. Yang, T.-Y. Chu, H.-Y. Chao, Y. Chuang, S.-T. Chung, J.-H. Lin, S.-M. Luo, C.-J. Tsai, M.-J. Li, X.-R. Yu, N.-C. Lin, T.-C. Cho, P.-J. Sung, C.-J. Su, G.-L. Luo, F.-K. Hsueh, K.-L. Lin, H. Ishii, T. Irisawa, T. Maeda, C.-T. Wu, W. C.-Y. Ma, D.-D. Lu, K.-H. Kao, Y.-J. Lee, H. J.-H. Chen, C.-L. Lin, R. W. Chuang, K.-P. Huang, S. Samukawa, Y.-M. Li, J.-H. Tarng, T.-S. Chao, M. Miura, G.-W. Huang, W.-F. Wu, J.-Y. Li, J.-M. Shieh, Y.-H. Wang, and W.-K. Yeh, “First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature (200 °C) Hetero-Layers Bonding Technique (LT-HBT),” in IEDM Tech. Dig., Dec. 2020, pp. 15.5.1–15.5.4, doi: 10.1109/IEDM13553.2020.9372001.
    [6.17] Y.-J. Lee, B.-A. Tsai, C.-H. Lai, Z.-Y. Chen, F.-K. Hsueh, P.-J. Sung, M. I. Current, and C.-W. Luo, “Low-Temperature Microwave Annealing for MOSFETs With High-k/Metal Gate Stacks,” IEEE Electron Device Lett., vol. 34, no. 10, pp. 1286–1288, Oct. 2013, doi: 10.1109/LED.2013.2279396.
    [6.18] Sentaurus TCAD Version 2019, Synopsys, Mountain View, CA, USA.
    [6.19] R. Zhang, X. Yu, M. Takenaka, and S. Takagi, “Impact of Channel Orientation on Electrical Properties of Ge p- and n-MOSFETs With 1-nm EOT Al2O3/GeOx/Ge Gate-Stacks Fabricated by Plasma Postoxidation,” IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3668–3675, Nov. 2014, doi: 10.1109/TED.2014.2359678.
    [6.20] L. P. B. Lima, H. F. W. Dekkers, J. G. Lisoni, J. A. Diniz, S. Van Elshocht, and S. De Gendt, “Metal gate work function tuning by Al incorporation in TiN,” J. Appl. Phys., vol. 115, 074504, Feb. 2014, doi: https://doi.org/10.1063/1.4866323.
    [7.1] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Dec. 2000, doi: 10.1109/16.887014.
    [7.2] R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser, N. Loubet, M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H. P. Amanapu, Z. Bi, J. Cha, H.-C. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu, and M. Khare, “A 7 nm FinFET Technology Featuring EUV Patterning and Dual Strained High Mobility Channels,” in IEDM Tech. Dig., Dec. 2016, pp. 2.7.1–2.7.4, doi: 10.1109/IEDM.2016.7838334.
    [7.3] M. J. H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, M. C. Holland, T. Vasen, A. Afzalian, E. Chen, S. K. Su, T. K. Chen, T. M. Shen, Z. Q. Wu, and C. H. Diaz, “Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs,” in IEDM Tech. Dig., Dec. 2018, pp. 21.1.1–21.1.4, doi: 10.1109/IEDM.2018.8614577.
    [7.4] Y.-W. Lin, H.-H. Chang, Y.-H. Huang, C.-J. Sun, S.-C. Yan, S.-W. Lin, G.-L. Luo, C.-T. Wu, Y.-C. Wu, and F.-J. Hou, “Tightly Stacked 3D Diamond-Shaped Ge Nanowire Gate-All-Around FETs With Superior nFET and pFET Performance,” IEEE Electron Device Lett., vol. 42, no. 12, pp. 1727–1730, Dec. 2021, doi: 10.1109/LED.2021.3125059.
    [7.5] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, “7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,” in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1–2, doi: 10.1109/VLSITechnology18217.2020.9265025.
    [7.6] R. Ritzenthaler, H. Mertens, G. Eneman, E. Simoen, E. Bury, P. Eyben, F. M. Bufler, Y. Oniki, B. Briggs, B. T. Chan, A. Hikavyy, G. Mannaert, B. Parvais, A. Chasin, J. Mitard, E. D. Litta, S. Samavedam, and N. Horiguchi, “Comparison of Electrical Performance of Co-Integrated Forksheets and Nanosheets Transistors for the 2nm Technological Node and Beyond,” in IEDM Tech. Dig., Dec. 2021, pp. 26.2.1–26.2.4, doi: 10.1109/IEDM19574.2021.9720524.
    [7.7] C.-T. Tu, Y.-S. Huang, C.-Y. Cheng, C.-E. Tsai, J.-Y. Chen, H.-Y. Ye, F.-L. Lu, and C. W. Liu, “Uniform 4-Stacked Ge0.9Sn0.1 Nanosheets Using Double Ge0.95Sn0.05 Caps by Highly Selective Isotropic Dry Etch,” IEEE Trans. Electron Devices, vol. 68, no. 4, pp. 2071–2076, Apr. 2021, doi: 10.1109/TED.2021.3050430.
    [7.8] J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi, A. Mallik, H. Mertens, S. Demuynck, T. H. Bao, A. Veloso, N. Horiguchi, A. Mocuta, D. Mocuta, and J. Boemmels, “The Complementary FET (CFET) for CMOS scaling beyond N3,” in Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 141–142, doi: 10.1109/VLSIT.2018.8510618.
    [7.9] C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rachmady, I.-C. Tung, N. Thomas, U. Alaan, R. Paul, N. Kabir, B. Krist, A. Oni, M. Mehta, M. Harper, P. Nguyen, R. Keech, S. Vishwanath, K. L. Cheong, J. S. Kang, A. Lilak, M. Metz, S. Clendenning, B. Turkot, R. Schenker, H. J. Yoo, M. Radosavljevic, and J. Kavalieros, “3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling,” in IEDM Tech. Dig., Dec. 2020, pp. 20.6.1–20.6.4, doi: 10.1109/IEDM13553.2020.9372066.
    [7.10] H. Mertens, M. Hosseini, T. Chiarella, D. Zhou, S. Wang, G. Mannaert, E. Dupuy, D. Radisic, Z. Tao, Y. Oniki, A. Hikavyy, R. Rosseel, A. Mingardi, S. Choudhury, P. P. Gowda, F. Sebaai, A. Peter, K. Vandersmissen, J. P. Soulie, A. D. Keersgieter, L. P. B. Lima, C. Cavalcante, D. Batuk, G. T. Martinez, J. Geypen, F. Seidel, K. Paulussen, P. Favia, J. Boemmels, R. Loo, P. Wong, A. S. Marquez, B. T. Chan, J. Mitard, S. Subramanian, S. Demuynck, E. D. Litta, N. Horiguchi, S. Samavedam, and S. Biesemans, “Nanosheet-based Complementary Field-Effect Transistors (CFETs) at 48nm Gate Pitch, and Middle Dielectric Isolation to enable CFET Inner Spacer Formation and Multi-Vt Patterning,” in Proc. IEEE Symp. VLSI Technol., Jun. 2023, pp. 1–2, doi: 10.23919/VLSITechnologyandCir57934.2023.10185218.
    [7.11] C.-T. Tu, W.-H. Hsieh, Y.-R. Chen, B.-W. Huang, Y.-T. Liao, W.-J. Chen, Y.-C. Liu, C.-Y. Cheng, H.-C. Chou, H.-Y. Lu, C.-H. Hsin, G.-M. He, D. S. Woo, S.-J. Chueh, and C. W. Liu, “First Demonstration of Monolithic Self-aligned Heterogeneous Nanosheet Channel Complementary FETs with Matched VT by Band Alignments of Individual Channels,” in IEDM Tech. Dig., Dec. 2023, pp. 1–4, doi: 10.1109/IEDM45741.2023.10413805.
    [7.12] M. Radosavljević, C.-Y. Huang, R. Galatage, M. F. Qayyum, J. A. Wiedemer, E. Clinton, D. Bennett, H. Ryu, N. K. Thomas, P. Morrow, T. Michaelos, R. Nahm, N. Briggs, A. Roy, C. C. Kuo, S. Atanasov, S. Ghose, N. Zussblatt, N. Kumar, D. Unluer, M. Beasley, J. M. Tan, L. H. Tan, M. Elkins, S. Cekli, R. Hermann, L. Shoer, M. A. El Qader, U. Desai, T. Edwards, P. Prasad, J. Armstrong, M. Ghosh, Y.-A. Liao, V. Kapinus, D. Dixit, M. K. Harper, P. Tran, K. L. Cheong, A. Fatehi, A. A. Oni, N. Franco, B. J. Krist, M. V. Metz, G. Dewey, R. Schenker, and M. J. Kobrinsky, “Demonstration of a Stacked CMOS Inverter at 60nm Gate Pitch with Power Via and Direct Backside Device Contacts,” in IEDM Tech. Dig., Dec. 2023, pp. 1–4, doi: 10.1109/IEDM45741.2023.10413678.
    [7.13] Y.-W. Lin, S.-W. Lin, B.-A. Chen, C.-J. Sun, S.-C. Yan, G.-L. Luo, Y.-C. Wu, and F.-J. Hou, “3-D Self-Aligned Stacked Ge Nanowire pGAAFET on Si nFinFET of Single Gate CFET,” IEEE J. Electron Devices Soc., vol. 11, pp. 480–484, 2023, doi: 10.1109/JEDS.2023.3309812.
    [7.14] W. Rachmady, A. Agrawal, S. H. Sung, G. Dewey, S. Chouksey, B. Chu-Kung, G. Elbaz, P. Fischer, C. Y. Huang, K. Jun, B. Krist, M. Metz, T. Michaelos, B. Mueller, A. A. Oni, R. Paul, A. Phan, P. Sears, T. Talukdar, J. Torres, R. Turkot, L. Wong, H. J. Yoo, and J. Kavalieros, “300mm Heterogeneous 3D Integration of Record Performance Layer Transfer Germanium PMOS with Silicon NMOS for Low Power High Performance Logic Applications,” in IEDM Tech. Dig., Dec. 2019, pp. 29.7.1–29.7.4, doi: 10.1109/IEDM19573.2019.8993626.
    [7.15] T.-Z. Hong, W.-H. Chang, A. Agarwal, Y.-T. Huang, C.-Y. Yang, T.-Y. Chu, H.-Y. Chao, Y. Chuang, S.-T. Chung, J.-H. Lin, S.-M. Luo, C.-J. Tsai, M.-J. Li, X.-R. Yu, N.-C. Lin, T.-C. Cho, P.-J. Sung, C.-J. Su, G.-L. Luo, F.-K. Hsueh, K.-L. Lin, H. Ishii, T. Irisawa, T. Maeda, C.-T. Wu, W. C.-Y. Ma, D.-D. Lu, K.-H. Kao, Y.-J. Lee, H. J.-H. Chen, C.-L. Lin, R. W. Chuang, K.-P. Huang, S. Samukawa, Y.-M. Li, J.-H. Tarng, T.-S. Chao, M. Miura, G.-W. Huang, W.-F. Wu, J.-Y. Li, J.-M. Shieh, Y.-H. Wang, and W.-K. Yeh, “First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature (200 °C) Hetero-Layers Bonding Technique (LT-HBT),” in IEDM Tech. Dig., Dec. 2020, pp. 15.5.1–15.5.4, doi: 10.1109/IEDM13553.2020.9372001.
    [7.16] X.-R. Yu, M.-H. Chuang, S.-W. Chang, W.-H. Chang, T.-C. Hong, C.-H. Chiang, W.-H. Lu, C.-Y. Yang, W.-J. Chen, J.-H. Lin, P.-H. Wu, T.-C. Sun, S. Kola, Y.-S. Yang, Y. Da, P.-J. Sung, C.-T. Wu, T.-C. Cho, G.-L. Luo, K.-H. Kao, M.-H. Chiang, W. C.-Y. Ma, C.-J. Su, T.-S. Chao, T. Maeda, S. Samukawa, Y. Li, Y.-J. Lee, W.-F. Wu, J.-H. Tarng, and Y.-H. Wang, “Integration Design and Process of 3-D Heterogeneous 6T SRAM with Double Layer Transferred Ge/2Si CFET and IGZO Pass Gates for 42% Reduced Cell Size,” in IEDM Tech. Dig., Dec. 2022, pp. 20.5.1–20.5.4, doi: 10.1109/IEDM45625.2022.10019507.
    [7.17] J. Wang, S. D. Suk, A. Chu, T. Hook, A. Young, R. Krishnan, R. Bao, I. Seshadri, B. Senapati, V. Zalani, T. Philip, H. Zhou, K. Zhao, D. Dechene, B. Haran, D. Guo, and H. Bu, “Challenges and Opportunities for Stacked Transistor: DTCO and Device,” in Proc. IEEE Symp. VLSI Technol., Jun. 2021, pp. 1–2.
    [7.18] R. Zhang, N. Taoka, P.-C. Huang, M. Takenaka, and S. Takagi, “1-nm-thick EOT High Mobility Ge n- and p-MOSFETs with Ultrathin GeOx/Ge MOS Interfaces Fabricated by Plasma Post Oxidation,” in IEDM Tech. Dig., Dec. 2011, pp. 28.3.1–28.3.4, doi: 10.1109/IEDM.2011.6131630.
    [7.19] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, “Record-high Electron Mobility in Ge n-MOSFETs exceeding Si Universality,” in IEDM Tech. Dig., Dec. 2009, pp. 19.2.1–19.2.4, doi: 10.1109/IEDM.2009.5424323.
    [7.20] Sentaurus TCAD Version, Synop., Mountain View, CA, USA, 2019.
    [7.21] F. A. Trumbore, “Solid solubilities of impurity elements in germanium and silicon,” Bell Syst. Tech. J., vol. 39, no. 1, pp. 205–233, Jan. 1960, doi: 10.1002/j.1538-7305.1960.tb03928.x.
    [7.22] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett., 89, 252110, 2006, doi: https://doi.org/10.1063/1.2410241.
    [7.23] IRDS. (2022). International Roadmap for Devices and Systems. [Online]. Available: https://irds.ieee.org/editions/2022.

    QR CODE