簡易檢索 / 詳目顯示

研究生: 史利南
Sriram, K. K.
論文名稱: Micro- and nanofluidic devices for complexed DNA analysis at the single molecule level
應用微奈米流體元件於單分子DNA複合體之分析
指導教授: 周家復
蘇育全
口試委員: 周家復
蘇育全
李超煌
蕭百沂
實驗室
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 108
中文關鍵詞: DNA 單分子研究奈米解析
外文關鍵詞: Micro and nanofluidics, Single molecule imaging and analysis, DNA-protein complexes, Fluorescence imaging
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Single molecule DNA studies have developed into a useful tool over the past two decades. Unlike conventional experiments that provide collective information of an ensemble, it gives us the opportunity to manipulate individual DNA molecules, observe and analyze their behavior upon interaction with other biomolecules like proteins. DNA is a semi-flexible polymer, which exists in its physiological random-coil state in a bulk environment, making direct visualization of DNA and its interactions to proteins or drugs challenging. Stretching and immobilization of DNA molecules thus becomes a critical requirement for single molecule studies. Techniques like optical trapping, magnetic trapping, flow stretching, molecular combing, and confinement induced stretching using micro- and nanofluidic devices have been widely used to stretch and immobilize DNA molecules.
    In this thesis, we developed two independent micro/nanofluidic devices that share a similar fabrication scheme, but with different approaches for effective DNA immobilization and stretching, other than the previously demonstrated techniques. The first one is a proof-of-concept method adopting nanoslit, bioconjugation, and single molecule imaging for direct mapping of transcriptional factor (TF) binding sites on field-stretched single DNA molecules. TFs are proteins that bind to specific loci of DNA using DNA binding domains to carry out the process of transcription. Hence, the identification of TF binding sites is essential for understanding the regulatory circuits that control cellular processes such as cell division and differentiation as well as metabolic and physiological balance. The nanoslit devices used in this work are fabricated in fused silica substrate, with tens of nanometers in depth, and are conformably sealed by a polymer-coated coverslip. This device is used for the mapping of TF (E. coli RNA polymerase holoenzyme, or RNAP) binding sites along lambda phage DNA, where two promoters and three pseudo-promoters sites of E. coli RNAP have been identified with ~ 100 nm resolution. The advantages of our nanoslit device include multiplexing, quick mapping of TF binding sites, and the ability to distinguish real complexes from non-specific ones.
    The second work is the demonstration of a new DNA combing scheme using oxygen (O2) plasma-modified polysilsesquioxane (PSQ) polymer coated surface to effectively immobilize and stretch DNA molecules. The increase in surface roughness and surface potential due to low-pressure O2 plasma treatment are proposed to be the major factors in effective DNA combing. The advantage of this method is extremely simple, and the property of the surface can be fine-tuned with O2 plasma treatment, to anchor DNA molecule at the end or multiple points. Plasma treated PSQ surface can be directly used for room-temperature bonding of micro/nanofluidic devices, which in turn can be used directly for DNA combing experiments without further surface modifications. In this work, we used our DNA combing platform for fluorescence single molecule imaging of anti-cancer drug cisplatin complexed DNA molecules. Our observations show intra-strand crosslinking of DNA molecules in the presence of cisplatin, leading to DNA condensation.
    Both platforms enable single molecule DNA studies and open up the possibility of multitude of DNA interaction studies involving other biomolecules, like proteins, or drugs. In addition, we have also demonstrated the possibility of carrying out transverse current measurements using a device with a tandem array of electrode nanogaps embedded co-planar into a nanofluidic channel, to map DNA binding sites of proteins, which, with further development, could well serve as a tool for single molecule DNA analysis and a wide variety of other applications.


    過去二十年來,DNA 單分子研究已經成為實用的研究工具。相較於傳統實驗技術觀察眾多分子的平均整體表現,單分子研究可以操控、觀察與分析單一 DNA 分子與其他生物分子之互動。例如:DNA 作為半彈性聚合物在生理溶液的環境下形成不規則捲曲狀態,可以直接觀察 DNA 及其與蛋白質或藥物互動。因此,伸展與固定化 DNA 分子為單分子研究之必要步驟。相關技術例如:光鑷夾、磁鑷夾、利用流體伸展、分子篩、奈米或微米流道已經被廣泛地用來伸展與固定 DNA 分子。
    本論文發展兩型獨立的微奈米流道裝置。相較於其他技術,本研究使用相似製程並提供兩種有效的 DNA 固定與伸展。第一部份為使用奈米流道、生物橋接與單分子影像技術直接觀察轉錄因子於展開之單一DNA 分子上的結合位置。轉錄因子於轉錄時會結合到 DNA 特定基因座。因此,鑑別轉錄因子的結合位對於了解基因迴路與調節機制非常重要,例如細胞分裂與分化以及代謝與生理平衡機制。本研究之奈米流道使用熔融石英基材,流道深度為數十奈米,使用有聚合物塗層之蓋玻片封裝,觀察轉錄因子(大腸桿菌 RNA 聚合酶)在噬菌體 DNA 上的結合位。已知結合位包括兩個啟動子與三個 pseudo-promoters在本研究中可以 100 奈米解析度觀察。此奈米流道裝置可以多工、快速地標定結合位,並可區別真正結合位與非特異性結合位。
    第二部份展示新的 DNA 分子梳技術。使用氧電漿修飾之polysilsesquioxane 表面塗層,有效固定與伸展 DNA 分子。表面粗糙度與電位因為低壓氧電漿處理而上升,推測是 DNA 分子梳的主要原因。此技術的優點是製程簡易,並且表面的性質可以藉由微調氧電漿處理的參數,來調整 DNA 固定在末梢或者多點固定。氧電漿處理的 PSQ流道封裝,不需要額外的表面修飾,可直接用來做 DNA 分子梳實驗。本研究中,我們使用 DNA 分子梳平台與單分子螢光影像技術觀察抗癌藥物 cisplatin 結合 DNA 分子。研究結果觀察到 cisplatin 結合在 DNA 雙股中,造成 DNA 凝聚現象。兩個技術平台均使用單分子 DNA 技術觀察 DNA 與生物分子如蛋白質、藥物的互動。此外,我們也在奈米流道中裝置多重平面化奈米電極 做為電流偵測系統來偵測蛋白質在 DNA 上的結合位,未來可望作為 DNA 單分子分析工具或其他未來應用潛能。

    Abstract iii Acknowledgments ix Chapter 1: Motivation 1 1.1 Introduction 1 1.2 Motivation 2 1.2.1 Direct optical mapping of transcription factor binding sites (TFBS) on field stretched single DNA molecules 2 1.2.2 Low-Pressure oxygen plasma modified polysilsesquioxane bonded microchannels for effective DNA immobilization and drug induced DNA condensation study 4 1.3 Outline of the thesis 6 Chapter 2: Studies relevant to our work – A literature survey 7 2.1 Introduction 7 2.2 Conventional approaches to study DNA-protein complexes 7 2.2.1 Electrophoretic mobility shift assay (EMSA) 8 2.2.2 DNA footprinting assay 10 2.2.3 EMSA versus DNA footprinting 12 2.2.4 Chromatin immunoprecipitation (ChIP) 12 2.3 SMA to map transcription factor binding site locations 14 2.3.1 Atomic force microscopy (AFM) 15 2.3.2 Optical tweezers 18 2.3.3 Flow stretching and molecular combing 19 2.3.4 Micro- and nanofabricated devices 25 2.3.5 Comparison between different techniques used to map TFBS locations: 29 Chapter 3: Device Fabrication 34 3.1 Micro-nano fluidic device for DNA-protein complex mapping 34 3.1.1 Device Design 34 3.1.2 Microchannel Fabrication: 36 3.1.3 Nanoslit Fabrication: 38 3.1.4 Wafer Dicing and Drilling Loading Holes 40 3.1.5 Chip Bonding 40 3.1.6 Alternate fabrication scheme 42 3.2 Microfluidic devices for DNA-drug interaction studies 43 3.2.1 Surface preparation and device fabrication 44 Chapter 4: Direct Optical Mapping of Transcription Factor Binding Sites Using Nanofluidic Devices 47 4.1 Introduction 47 4.2 Experimental methods 48 4.2.1 Genomic DNA 48 4.2.2 Fluosphere end labeling of λ genomic DNA 49 4.2.3. Stretching fluosphere end labeled DNA molecules using nanoslit device 53 4.2.4 E. coli RNA polymerase – A model system 56 4.2.5 SDS-PAGE and Western Blot Experiments 57 4.2.6 Formation of λ-DNA - E. coli RNAP complexes 60 4.2.7 Preparation of DNA-RNAP complexes for single molecule experiments 62 4.2.8 Surface passivation 65 4.2.9 Fluorescence single molecule experiments using nanoslit devices 66 4.2.10 Fluorescence Microscopy: 68 4.2.11 Image processing and analysis 69 4.2.12: Results and discussion 72 4.2.13: Comparison with earlier studies 73 Chapter 5: DNA combing on O2 plasma treated PSQ substrates for effective DNA-drug interaction studies 78 5.1 Introduction 78 5.2 Atomic force microscope (AFM) and Kelvin probe force microscope (KPFM) measurements 80 5.3 DNA immobilization and stretching experiments 82 5.4 Cisplatin-complexed DNA experiments 85 5.5 Other applications 89 Chapter 6: Conclusions and future work 91 6.1 Nanofluidic devices to map TFBS locations 91 6.2 DNA immobilization and stretching devices 97 BIBLIOGRAPHY 99

    1. P. Abgrall and N.T. Nguyen, "Nanofluidic devices and their applications",Anal Chem vol. 80, pp. 2326-2341, 2008.
    2. J.C.T. Eijkel and A.v.d. Berg, "Nanofluidics: what is it and what can we expect from it?",Microfluid. Nanofluid. vol. 1, pp. 249-267, 2005.
    3. G. Hu and D. Li, "Multiscale phenomena in microfluidics and nanofluidics",Chem. Eng. Sci. vol. 62, pp. 3443-3454, 2007.
    4. R. Mukhopadhyay, "What Does Nanofluidics Have to Offer?",Anal. Chem. vol. 78, pp. 7379-7382, 2006.
    5. J.O. Tegenfeldt, C. Prinz, H. Cao, R.L. Huang, R.H. Austin, S.Y. Chou, E.C. Cox and J.C. Sturm, "Micro- and nanofluidics for DNA analysis",Anal. Bioanal. Chem. vol. 378, pp. 1678-1692, 2004.
    6. F. Crick, "Central Dogma of Molecular Biology",Nature vol. 227, pp. 561-563, 1970.
    7. D.S. Latchman, "transcription factors - an overview",Int. J. Biochem. Cell Biol. vol. 29, pp. 1305-1312, 1997.
    8. C.E. Massie and I.G. Mills, "ChIPping away at gene regulation",EMBO Rep. vol. 9, pp. 337-343, 2008.
    9. P. Collas, "The current state of chromatin immunoprecipitation",Mol Biotechnol vol. 45, pp. 87-100, 2010.
    10. T.S. Furey, "ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions",Nat Rev Genet vol. 13, pp. 840-852, 2012.
    11. A. Valouev, D.S. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglou, R.M. Myers and A. Sidow, "Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data",Nat Methods vol. 5, pp. 829-834, 2008.
    12. M.F. Carey, C.L. Peterson and S.T. Smale, "Experimental strategies for the identification of DNA-binding proteins",Cold Spring Harb Protoc vol. 2012, pp. 18-33, 2012.
    13. M.M. Musri, R. Gomis and M. Parrizas, "Application of electrophoretic mobility shift assay and chromatin immunoprecipitation in the study of transcription in adipose cells",Methods Mol Biol vol. 456, pp. 231-247, 2008.
    14. S.H. Lee Kang, K. Vieira and J. Bungert, "Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo",Nucleic Acids Res. vol. 30, pp. e44, 2002.
    15. S. Weiss, "Fluorescence Spectroscopy of Single Biomolecules",Science vol. 283, pp. 1676-1683, 1999.
    16. J. Elf, G.W. Li and X.S. Xie, "Probing transcription factor dynamics at the single-molecule level in a living cell",Science vol. 316, pp. 1191-1194, 2007.
    17. F. Ritort, "Single-molecule experiments in biological physics: methods and applications",J Phys Condens Matter vol. 18, pp. R531-583, 2006.
    18. A.A. Deniz, S. Mukhopadhyay and E.A. Lemke, "Single-molecule biophysics: at the interface of biology, physics and chemistry",J R Soc Interface vol. 5, pp. 15-45, 2008.
    19. S.E. Halford, "How do site-specific DNA-binding proteins find their targets",Nucleic Acids Res. vol. 32, pp. 3040-3052, 2004.
    20. F.W. Jason Gorman, Sy Redding, Aaron J. Plys, Teresa Fazio, Shalom Wind, Eric E. Alani and Eric C. Greene, "Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair",Proc. Natl. Acad. Sci. U. S. A. vol. 109, pp. E3074-E3083, 2012.
    21. J.H. Kim and R.G. Larson, "Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules",Nucleic Acids Res vol. 35, pp. 3848-3858, 2007.
    22. Y. Wang, L. Guo, I. Golding, E.C. Cox and N.P. Ong, "Quantitative transcription factor binding kinetics at the single-molecule level",Biophys J vol. 96, pp. 609-620, 2009.
    23. J.F. Foley and N.R. Gough, "Focus Issue: Single Molecules--Zooming in for a Closer Look",Sci. Signal. vol. 2007, pp. eg5-eg5, 2007.
    24. N.J. Savery and S.J.W. Busby."Mobility Shift Aassays". In Rapley, R. and Walker, J. M. (eds.), Book. Humana Press Inc., New Jersey, pp. 121-1292008.
    25. R.J. Meagher, J.I. Won, L.C. McCormick, S. Nedelcu, M.M. Bertrand, J.L. Bertram, G. Drouin, A.E. Barron and G.W. Slater, "End-labeled free-solution electrophoresis of DNA",Electrophoresis vol. 26, pp. 331-350, 2005.
    26. D.J. Galas and A. Schmitz, "DNAase footprinting- a simple method for the detection of protein-DNA binding specificity",Nucleic Acids Res. vol. 5, pp. 3157-3170, 1978.
    27. J.T. Kadonaga, K.R. Carner, F.R. Masiarz and R. Tjian, "Isolation of cDNA Encoding Transcription Factor SpI and Functional Analysis of the DNA Binding Domain",Cell vol. 51, pp. 1079-1090, 1987.
    28. J.H. Kim, V.R. Dukkipati, S.W. Pang and R.G. Larson, "Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level",Nanoscale Res. Lett. vol. 2, pp. 185-201, 2007.
    29. J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan et al., "From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels",Proc Natl Acad Sci U S A vol. 101, pp. 10979-10983, 2004.
    30. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner and M. Havenith, "Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy",J. Am. Chem. Soc. vol. 130, pp. 2374-2375, 2008.
    31. L. Bai, T.J. Santangelo and M.D. Wang, "single molecule analysis of RNA Polymerase transcription ",Annu. Rev. Biophys. Biomol. Struct. vol. 35, pp. 343-360, 2006.
    32. M. Guthold, M. Bezanilla, D.A. Erie, B. Jenkins, H.G. Hansma and C. Bustamante, "Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope",Proc. Natl. Acad. Sci. U. S. A. vol. 91, pp. 12927-12931, 1994.
    33. S. Kasas, N.H. Thomson, B.L. Smith, H.G. Hansma, X. Zhu, M. Guthold, C. Bustamante, E.T. Kool, M. Kashlev and P.K. Hansma, "EColi RNA Polymerase Activity Observed Using Atomic Force Microscopy",Biochem. vol. 36, pp. 461-468.
    34. M. Guthold, X. Zhu, C. Rivetti, G. Yang, N.H. Thomson, S. Kasas, H.G. Hansma, B. Smith, P.K. Hansma and C. Bustamante, "Direct Observation of One-Dimensional Diffusion and Transcription by Escherichia coli RNA Polymerase",Biophys. J. vol. 77, pp. 2284-2294, 1999.
    35. D. Pastre, L. Hamon, I. Sorel, E. Le Cam, P.A. Curmi and O. Pietrement, "Specific DNA-protein interactions on mica investigated by atomic force microscopy",Langmuir vol. 26, pp. 2618-2623, 2010.
    36. C. Rivetti, M. Guthold and C. Bustamante, "Wrapping of DNA around the E.coli RNA polymerase open promoter complex",EMBO J. vol. 18, pp. 4464-4475, 1999.
    37. Y. Ebenstein, N. Gassman, S. Kim and S. Weiss, "Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein-DNA complexes",J Mol Recognit vol. 22, pp. 397-402, 2009.
    38. J.W. Shaevitz, E.A. Abbondanzieri, R. Landick and S.M. Block, "Backtracking by single RNA polymerase molecules observed at near base pair resolution",Nature vol. 426, pp. 684-687, 2003.
    39. K. Sakata-Sogawa and N. Shimamoto, "RNA polymerase can track a DNA groove during promoter search",Proc Natl Acad Sci U S A vol. 101, pp. 14731-14735, 2004.
    40. G.M. Skinner, C.G. Baumann, D.M. Quinn, J.E. Molloy and J.G. Hoggett, "Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle",J Biol Chem vol. 279, pp. 3239-3244, 2004.
    41. Y. Harada, T. Funatsu, K. Murakami, Y. Nanoyama, A. Ishihama and T. Yanagida, "Single molecule imaging of RNA polymerase-DNA interactions in real time",Biophys. J. vol. 76, pp. 709-715, 1999.
    42. H. Yu and D.C. Schwartz, "Imaging and analysis of transcription on large, surface-mounted single template DNA molecules",Anal Biochem vol. 380, pp. 111-121, 2008.
    43. V.R. Dukkipati, J.H. Kim, S.W. Pang and R.G. Larson, "Protein-assisted stretching and immobilization of DNA molecules in a microchannel",Nano Lett vol. 6, pp. 2499-2504, 2006.
    44. Y. Ebenstein, N. Gassman, S. Kim, J. Antelman, Y. Kim, S. Ho, R. Samuel, X. Michalet and S. Weiss, "Lighting Up Individual DNA Binding proteins with Quantum dots",Nano Lett. vol. 9, pp. 1598-1603, 2009.
    45. S. Kim, A. Gottfried, R.R. Lin, T. Dertinger, A.S. Kim, S. Chung, R.A. Colyer, E. Weinhold, S. Weiss and Y. Ebenstein, "Enzymatically incorporated genomic tags for optical mapping of DNA-binding proteins",Angew. Chem., Int. Ed. vol. 51, pp. 3578-3581, 2012.
    46. A. Graneli, C.C. Yeykal, T.K. Prasad and E.C. Greene, "Organized Arrays of Individual DNA Molecules Tethered to Supported Lipid Bilayers",Langmuir vol. 22, pp. 292-299, 2006.
    47. I.J. Finkelstein, M.L. Visnapuu and E.C. Greene, "Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase",Nature vol. 468, pp. 983-987, 2010.
    48. B. Gibb, T.D. Silverstein, I.J. Finkelstein and E.C. Greene, "Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions",Anal Chem vol. 84, pp. 7607-7612, 2012.
    49. J. Gorman, A. Chowdhury, J.A. Surtees, J. Shimada, D.R. Reichman, E. Alani and E.C. Greene, "Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6",Mol Cell vol. 28, pp. 359-370, 2007.
    50. J. Gorman, T. Fazio, F. Wang, S. Wind and E.C. Greene, "Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging",Langmuir vol. 26, pp. 1372-1379, 2010.
    51. Y.M. Wang, J.O. Tegenfeldt, W. Reisner, R. Riehn, X.J. Guan, L. Guo, I. Golding, E.C. Cox, J. Sturm and R.H. Austin, "Single-molecule studies of repressor-DNA interactions show long-range interactions",Proc Natl Acad Sci U S A vol. 102, pp. 9796-9801, 2005.
    52. F. Persson, J. Fritzsche, K.U. Mir, M. Modesti, F. Westerlund and J.O. Tegenfeldt, "Lipid-based passivation in nanofluidics",Nano Lett vol. 12, pp. 2260-2265, 2012.
    53. S.K. Das, M.D. Austin, M.C. Akana, P. Deshpande, H. Cao and M. Xiao, "Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes",Nucleic Acids Res vol. 38, pp. e177, 2010.
    54. E.T. Lam, A. Hastie, C. Lin, D. Ehrlich, S.K. Das, M.D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao et al., "Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly",Nat. Biotechnol. vol. 30, pp. 771-776, 2012.
    55. O. Kennard, "DNA-drug interactions",Pure Appl. Chem. vol. 65, pp. 1213-1222, 1993.
    56. R.K. Jena and C.Y. Yue, "Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine",Biomicrofluidics vol. 6, pp. 12822-1282212, 2012.
    57. L.J. Guo, X. Cheng and C.F. Chou, "Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching",Nano Lett. vol. 4, pp. 69-73, 2004.
    58. R.H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, "Silsesquioxanes",Chem. Rev. vol. 95, pp. 1409-1430, 1995.
    59. J. Gu, R. Gupta, C.F. Chou, Q. Wei and F. Zenhausern, "A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature",Lab Chip vol. 7, pp. 1198-1201, 2007.
    60. J.W. Yeh, A. Taloni, Y.L. Chen and C.F. Chou, "Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces",Nano Lett. vol. 12, pp. 1597-1602, 2012.
    61. T. Leichlé, Y.L. Lin, P.C. Chiang, S.M. Hu, K.T. Liao and C.F. Chou, "Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment",Sens. Actuators, B vol. 161, pp. 805-810, 2012.
    62. L.R. Leonardo, K.K. Sriram, K.T. Liao, S.C. Lai, P.C. Kuo, M.L. Chu and C.F. Chou, "Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis",Biomicrofluidics vol. 8, pp. 016501, 2014.
    63. K.T. Liao and C.F. Chou, "Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers",J. Am. Chem. Soc. vol. 134, pp. 8742-8745, 2012.
    64. J. Friend and L. Yeo, "Fabrication of microfluidic devices using polydimethylsiloxane",Biomicrofluidics vol. 4, pp. 2010.
    65. H. Shinohara, J. Mizuno and S. Shoji, "Low-temperature direct bonding of poly(methyl methacrylate) for polymer microchips",IEEJ Trans. Electr. Electron. Eng. vol. 2, pp. 301-306, 2007.
    66. S.A. Cohen. (1989) An Introduction to Plasma Physics for Materials Processing. Academic Press, UK, Amsterdam.
    67. F. Sanger, Coulson, A.R., Hong, G.F., Hill, D.F., Petersen, G.B. , "Nucleotide Sequence of Bacteriophage lambda DNA",J. Mol. Biol. vol. 162, pp. 729-773, 1982.
    68. G.L. Trainor, "A procedure for the preparation of fluorescence-labeled DNA with terminal deoxynucleotidyl transferase",Nucleic Acids Res. vol. 16, pp. 11846, 1988.
    69. T.T. Perkins, "Relaxation of a Single DNA Molecule Observed by Optical Microscopy",Science vol. 264, pp. 822-826, 1994.
    70. A. Crut, B. Geron-Landre, I. Bonnet, S. Bonneau, P. Desbiolles and C. Escude, "Detection of single DNA molecules by multicolor quantum-dot end-labeling",Nucleic Acids Res. vol. 33, pp. e98, 2005.
    71. R.D. Finn, Orlova, E.V., Gowen, B., Buck, M., Heel, M.V., "Escherichia coli RNA polymerase core and holoenzyme structures",EMBO J. vol. 19, pp. 6833-6844, 2000.
    72. R.R. Burgess, "RNA Polymerase",Annu. Rev. Biochem. vol. 40, pp. 711-740, 1971.
    73. D.K.M. Hawley, W.R., "Compilation and analysis of escherichia coli promoter DNA sequences",Nucleic Acids Res. vol. 11, pp. 2237-2255, 1983.
    74. Y. Harada, "Studies on biomolecules using single molecule imaging and manipulation techniques",Sci. Technol. Adv. Mater. vol. 5, pp. 709-713, 2004.
    75. K.L. Brodolin, V.M. Studitsky and A.D. Mirzabekov, "Conformational changes in E.coli RNA polymerase during promoter recognition.pdf",Nucleic Acids Res. vol. 21, pp. 5748-5753, 1993.
    76. D. Bonthuis, C. Meyer, D. Stein and C. Dekker, "Conformation and Dynamics of DNA Confined in Slitlike Nanofluidic Channels",Phys. Rev. Lett. vol. 101, pp. 108303, 2008.
    77. S. Matsuura, J. Komatsu, K. Hirano, H. Yasuda, K. Takashima, S. Katsura and A. Mizuno, "Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field",Nucleic Acids Res. vol. 29, pp. e79, 2001.
    78. T.F. Chan, C. Ha, A. Phong, D. Cai, E. Wan, L. Leung, P.Y. Kwok and M. Xiao, "A simple DNA stretching method for fluorescence imaging of single DNA molecules",Nucleic Acids Res vol. 34, pp. e113, 2006.
    79. J.T. Mannion, C.H. Reccius, J.D. Cross and H.G. Craighead, "Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels",Biophys J vol. 90, pp. 4538-4545, 2006.
    80. C.H. Reccius, S.M. Stavis, J.T. Mannion, L.P. Walker and H.G. Craighead, "Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels",Biophys J vol. 95, pp. 273-286, 2008.
    81. K.S. Nakanishi, T.; Imamura, K., "On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon ",J. Biosci. Bioeng. vol. 91, pp. 233-244, 2001.
    82. M. van der Veen, M.C. Stuart and W. Norde, "Spreading of proteins and its effect on adsorption and desorption kinetics",Colloids Surf B Biointerfaces vol. 54, pp. 136-142, 2007.
    83. P. Nelson."Cooperative transitions in macromolecules". Book. W.H. Freeman and Co., , New York, pp. 344-3472004.
    84. B. Maier, U. Seifert and J.O. Rädler, "Elastic response of DNA to external electric fields in two dimensions",Europhys. Lett. vol. 60, pp. 622-628, 2002.
    85. X. Qu, D. Wu, L. Mets and N.F. Scherer, "Nanometer-localized multiple single-molecule fluorescence microscopy",Proc Natl Acad Sci U S A vol. 101, pp. 11298-11303, 2004.
    86. T.T. Perkins, D.E. Smith, R.G. Larson and S. Chu, "Stretching of a single tethered polymer in a uniform flow",Science vol. 268, pp. 83-87, 1995.
    87. A. Yildiz, J.N. Forkey, S.A. McKinney, T. Ha, Y.E. Goldman and P.R. Selvin, "Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization",Science vol. 300, pp. 2061-2065, 2003.
    88. P.B. Melancon, R.R.; Record Jr., M.T. , "Nitrocellulose filter binding studies of the interactions of Escherichia coli RNA polymerase holoenzyme with deoxyribonucleic acid restriction fragments: Evidence for multiple classes of nonpromoter interactions, some of which display promoter-like properties",Biochem. vol. 21, pp. 4318-4331, 1982.
    89. J.-F. Allemand, D. Bensimon and V. Croquette, "Stretching DNA and RNA to probe their interactions with proteins",Curr. Opin. Struct. Biol. vol. 13, pp. 266-274, 2003.
    90. Z. Gueroui, C. Place, E. Freyssingeas and B. Berge, "Observation by fluorescence microscopy of transcription on single combed DNA",Proc Natl Acad Sci U S A vol. 99, pp. 6005-6010, 2002.
    91. R.M. Zimmermann, "DNA stretching on functionalized gold surfaces",Nucleic Acids Res. vol. 22, pp. 492-497, 1994.
    92. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot and D. Bensimon, "Alignment and sensitive detection of DNA by a moving interface",Science vol. 265, pp. 2096-2098, 1994.
    93. M. Heilemann, L.C. Hwang, K. Lymperopoulos and A.N. Kapanidis, "Single-molecule FRET analysis of protein-DNA complexes",Methods Mol. Biol. vol. 543, pp. 503-521, 2009.
    94. J.W. Efcavitch and J.F. Thompson, "Single-molecule DNA analysis",Annu. Rev. Anal. Chem. vol. 3, pp. 109-128, 2010.
    95. T. Wu and D.C. Schwartz, "Transchip: single-molecule detection of transcriptional elongation complexes",Anal. Biochem. vol. 361, pp. 31-46, 2007.
    96. J. Jing, J. Reed, J. Huang, X. Hu, V. Clarke, J. Edington, D. Housman, T.S. Anantharaman, E.J. Huff, B. Mishra et al., "Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules",Proc. Natl. Acad. Sci. U.S.A. vol. 95, pp. 8046-8051, 1998.
    97. Y. Kim and K. Jo, "Neutravidin coated surfaces for single DNA molecule analysis",Chem. Commun. vol. 47, pp. 6248-6250, 2011.
    98. X.M. Hou, X.H. Zhang, K.J. Wei, C. Ji, S.X. Dou, W.C. Wang, M. Li and P.Y. Wang, "Cisplatin induces loop structures and condensation of single DNA molecules",Nucleic Acids Res. vol. 37, pp. 1400-1410, 2009.
    99. D.Y. Lando, E.N. Galyuk, C.L. Chang and C.K. Hu, "Temporal behavior of DNA thermal stability in the presence of platinum compounds. Role of monofunctional and bifunctional adducts",J. Inorg. Biochem. vol. 117, pp. 164-170, 2012.
    100. A.M. Florea and D. Busselberg, "Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects",Cancers (Basel) vol. 3, pp. 1351-1371, 2011.
    101. D. Strumberg, S. Brugge, M.W. Korn, S. Koeppen, J. Ranft, G. Scheiber, C. Reiners, C. Mockel, S. Seeber and M.E. Scheulen, "Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer",Ann. Oncol. vol. 13, pp. 229-236, 2002.
    102. K.K. Sriram, J.W. Yeh, Y.L. Lin, Y.R. Chang and C.F. Chou, "Direct optical mapping of transcription factor binding sites on field-stretched lambda-DNA in nanofluidic devices",Nucleic Acids Res. vol. pp. 2014.
    103. S. Zhou, J. Herschleb and D.C. Schwartz."A Single Molecule System for Whole Genome Analysis". In Mitchelson, K. R. (ed.), Book. Elsevier, Vol. 2, pp. 265-3002007.
    104. B.C. Lagerholm, L. Averett, G.E. Weinreb, K. Jacobson and N.L. Thompson, "Analysis method for measuring submicroscopic distances with blinking quantum dots",Biophys J vol. 91, pp. 3050-3060, 2006.
    105. G.H. Seong, Niimi, T., Yanagida, Y., Kobatake, E., Aizawa, M., "Single-Molecular AFM Probing of Specific DNA Sequencing Using RecA-Promoted Homologous Pairing and Strand Exchange",Anal. Chem. vol. 72, pp. 1288-1293, 2000.
    106. H.K. Tsai, G.T.W. Huang, M.Y. Chou, H.H.S. Lu and W.H. Li, "Method for identifying transcription factor binding sites in yeast",Bioinformatics vol. 22, pp. 1675-1681, 2006.
    107. H.K. Tsai, M.Y. Chou, C.H. Shih, G.T. Huang, T.H. Chang and W.H. Li, "MYBS: a comprehensive web server for mining transcription factor binding sites in yeast",Nucleic Acids Res. vol. 35, pp. W221-226, 2007.
    108. G.F. Li, W.H. Li, J.M. Angelastro, L.A. Greene and D.X. Liu, "Identification of a Novel DNA Binding Site and a Transcriptional Target for Activating Transcription Factor 5 in C6 Glioma and MCF-7 Breast Cancer Cells",Mol Cancer Res vol. 7, pp. 933-943, 2009.
    109. C. Prinz, J.O. Tegenfeldt, R.H. Austin, E.C. Cox and J.C. Sturm, "Bacterial chromosome extraction and isolation",Lab on a Chip vol. 2, pp. 207-212, 2002.
    110. N. Ikeda, N. Tanaka, Y. Yanagida and T. Hatsuzawa, "On-Chip Single-Cell Lysis for Extracting Intracellular Material",Jpn. J. Appl. Phys. vol. 46, pp. 6410-6414, 2007.
    111. J. Antelman, "Nanometer Distance Measurements between Multicolor Quantum Dots",Nano Lett. vol. 9, pp. 2199-2205, 2009.
    112. K.A. Lidke, "Superresolution by localization of qdots using blinking statistics",Opt. Express vol. 13, pp. 7052-7062, 2005.
    113. R. Marie, J.N. Pedersen, D.L. Bauer, K.H. Rasmussen, M. Yusuf, E. Volpi, H. Flyvbjerg, A. Kristensen and K.U. Mir, "Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device",Proc Natl Acad Sci U S A vol. 110, pp. 4893-4898, 2013.
    114. L.H. Hurley, "DNA and its associated processes as targets for cancer therapy",Nat. Rev. Cancer vol. 2, pp. 188-200, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE