簡易檢索 / 詳目顯示

研究生: 吳姵禛
Wu, Pei-Chen
論文名稱: 利用後硒化製程在絕緣基板上控制二硒化鎢層狀成長之研究
Layered growth of WSe2 thin films on insulating substrate by post selenization
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 廖建能
Liao, Chien-Neng
朱旭山
Chu, Hsu-Shen
闕郁倫
Chueh, Yu-Lun
曾院介
Tseng, Yuan-Chieh
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 二硒化鎢硒化層狀成長方向性堆疊記憶體磊晶
外文關鍵詞: WSe2, selenization, layered growth, texture control, memory, epitaxy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀TMDC材料由於高電子流動性、高電流開關比、可調變能隙以及高化學反應活性接觸點,所以層狀TMDC材料被的研發被認為是一種可以驅使積體電路中電晶體數目不斷增加的方法之一。WSe2在大氣中相對穩定。在不須添加氧化物做為保護層,就可以清楚的暸解在不同製程手法下,材料本身基礎的特性。在過去十年,TMDC層狀尺寸化成長技術一直都是很大的挑戰。從絕緣基板到藍寶石基板、前驅物的選擇從金屬到金屬氧化,化學氣相沉積製程中所使用的硒源和時間梯度控制,以及最後TMDC的轉印技術都是控制TMDC是否可以尺寸化因素之一。
    為了有效成長WSe2膜層,並且了解WSe2的成長機制,本論文致力於使用低溫、短時間以及不需要使用毒性氣體(H2Se)的製程使層狀WSe2膜層尺寸化。本論文首先嘗試在(111)方向性的Pt/Ta/SiO2/Si 基板利用後硒化製程成長大尺寸且均勻地層狀WSe2膜層。其次使用非晶質SiO2/Si基板,運用具有相變化的金屬鎢做為前驅層,在使用相同的硒化條件,了解WSe2的成長機制。最後,透過硒化條件的控制,使表面形貌發生改變,進而造成親水性與疏水性的變化。
    本論文提出的方法在不需要使用金屬氧化物(WO3)以及有毒氣體(H2Se)的前提下,不僅可以大尺寸均勻的成長WSe2、也可以藉由不同相的前驅層金屬鎢控制WSe2膜的堆疊方向,同時藉由硒化條件改變可以調整WSe2表面形貌進而增加WSe2的應用性。現階段,此製程不論在大尺寸均勻合成或是表面改質上都可具有可調變性,相信在未來將具有一定的潛力。


    Increasing the number of transistors in integrated circuits is vital to the continued development of modern technological devices. Layered transition metal dichalcogenides (TMDCs) have been proposed for this purpose due to their high electron mobility, high current-switching ratio, variable energy gap, and high chemical reactivity. Relatively stable WSe2 film is employed in this dissertation, on which a protective layer of oxide does not need to be deposited, allowing the characteristics of WSe2 to be accurately assessed without interference. In the past 10 years, layered TMDC dimension growth is a big challenge. The factors that affect the layered TMDC dimension include a substrate, precursor, the selenium source and the reaction temperature gradient using in the process. This dissertation aims to utilize the low reaction temperature, short reaction time and non-toxic gas source to synthesis the layered WSe2 in order to understand the WSe2 growth mechanism. At first, in the dissertation, the big dimension growth of layered WSe2 films on (111)-directional Pt/Ta/SiO2/Si substrates using the selenization process. Secondly, the WSe2 with a different texture on the amorphous SiO2/Si substrates using the selenization process with different tungsten phase precursors in order to understand the WSe2 growth mechanism. Finally, through an optimized selenization temperature gradient modified WSe2 surface with different wettability. With this approach to growth the big dimension WSe2 film, the structure of WSe2 with different texture and morphology can be obtained by the precursor tungsten with different phases. At the current stage, the post selenization shows potential for large dimension layered WSe2 synthesis in the future.

    致謝 I Abstract II 中文摘要III Contents IV List of Figures VI Chapter 1 General Introduction 1 1.1 Context and objectives 1 1.2 Organization of this thesis 4 Chapter 2 Background 5 2.1 Introduction to TMDCs 5 2.1.1 TMDC crystals 6 2.1.2 The electron band structure for bulk and monolayer WSe2 7 2.1.3 2H–1T phase transformation 9 2.2 Fabrication of TMDCs 12 2.2.1 Bottom-up techniques 12 2.2.2 Top-down method 14 2.2.3 Low-temperature synthesis methods 17 2.3 Application of WSe2 20 2.3.1 The use of van der Waals forces 20 2.3.2 The use of dangling bonds 23 Chapter 3 Experimental Design and Analysis 26 3.1 Sample preparation 26 3.1.1 Tungsten fabrication 26 3.1.2 Two-step selenization 27 3.1.3 Film transfer method 28 3.2 Structural characterization 29 3.2.1 X-ray diffraction (XRD) 29 3.2.2 2D X-ray diffraction (2D-XRD) 30 3.2.3 Raman spectroscopy 31 3.2.4 Atomic force microscopy (AFM) 32 3.2.5 Scanning electron microscopy (SEM) 33 3.2.6 Transmission electron microscopy (TEM) 34 3.2.7 X-ray photoelectron spectroscopy (XPS) 35 3.2.8 Resistivity switching measurement system 36 Chapter 4 Epitaxial Growth of WSe2 via the Self-Assembly of PtSe2 37 4.1 Introduction of the epitaxial technique 37 4.2 Experimental design 38 4.3 Results and discussion 40 4.3.1 Scalable epitaxial WSe2 film 40 4.3.2 The uniformity of WSe2 as analyzed by Raman mapping 48 4.3.3 Se2 flakes with different thicknesses after exfoliation 51 4.3.4 Electrical performance of the WSe2 film 55 4.3.5 Summary 58 Chapter 5 Mechanisms Underlying the Growth Process of WSe2 59 5.1 Purpose 59 5.2 Experimental design 59 5.3 Mechanism discussion 59 5.3.1 Substrate effect 59 5.3.2 The role of PtSe2 62 5.3.3 The influence of Pt thickness 68 5.4 Summary 73 Chapter 6 Stacking of WSe2 in Lateral and Vertical Directions through the Controlled Selenization of Tungsten Films74 6.1 Purpose 74 6.2 Experimental details76 6.3 Results and discussion 77 6.3.1 Characterization of WSe2 77 6.3.2 Tungsten phase transformation 78 6.3.3 The growth mechanisms of WSe2 81 6.3.4 Summary 86 Chapter 7 Controlling Wettability by Changing WSe2 Surface Roughness 87 7.1 Introduction 87 7.2 Experimental details 88 7.3 Results and discussion 89 7.3.1 Texture control for WSe2 film. 89 7.3.2 WSe2 growth mechanisms 93 7.3.3 Creation of a hydrophobic surface 99 7.4 Summary 102 Chapter 8 Conclusion and Suggestions for Future Work 103 8.1 Conclusion 103 8.2 Suggestions for future work 104

    Bibliography

    1. Lee, D. S.; Kim, J. Y.; Shin, D. Y.; Lee, Y.; Kim, J.; Lee, S. J.; Joo, J., Significantly increased photoresponsivity of WSe2-based transistors through hybridization with gold-tetraphenylporphyrin as efficient n-type dopant. Adv. Electron. Mater. 2019, 5 (4), 1800802.
    2. Resta, G. V.; Sutar, S.; Balaji, Y.; Lin, D.; Raghavan, P.; Radu, I.; Catthoor, F.; Thean, A.; Gaillardon, P. E.; de Micheli, G., Polarity control in WSe2 double-gate transistors. Sci. Rep. 2016, 6, 29448.
    3. Chuang, H.-J.; Tan, X.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M.-C.; Yan, J.; Mandrus, D.; Tománek, D.; Zhou, Z., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14 (6), 3594-3601.
    4. Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K., Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13 (5), 1983-1990.
    5. Chen, J.-W.; Lo, S.-T.; Ho, S.-C.; Wong, S.-S.; Vu, T.-H.-Y.; Zhang, X.-Q.; Liu, Y.-D.; Chiou, Y.-Y.; Chen, Y.-X.; Yang, J.-C.; Chen, Y.-C.; Chu, Y.-H.; Lee, Y.-H.; Chung, C.-J.; Chen, T.-M.; Chen, C.-H.; Wu, C.-L., A gate-free monolayer WSe2 pn diode. Nat. Commun. 2018, 9 (1), 3143.
    6. Pumera, M.; Sofer, Z.; Ambrosi, A., Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2 (24), 8981-8987.
    7. Lee, H. W.; Kang, D. H.; Cho, J. H.; Lee, S.; Jun, D. H.; Park, J. H., Highly sensitive and reusable membraneless field-effect transistor (FET)-type tungsten diselenide (WSe2) biosensors. ACS Appl. Mater. Interfaces 2018, 10 (21), 17639-17645.
    8. Pumera, M.; Loo, A. H., Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trac-Trends Anal. Chem. 2014, 61, 49-53.
    9. Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q., Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci Rep 2017, 7.
    10. Zou, M. L.; Zhang, J. F.; Zhu, H.; Du, M. L.; Wang, Q. F.; Zhang, M.; Zhang, X. W., A 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. J. Mater. Chem. A 2015, 3 (23), 12149-12153.

    11. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2 (7), 1262-1267.
    12. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105 (13).
    13. Roldan, R.; Silva-Guillen, J. A.; Lopez-Sancho, M. P.; Guinea, F.; Cappelluti, E.; Ordejon, P., Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann. Phys.-Berlin 2014, 526 (9-10), 347-357.
    14. Bernardi, M.; Palummo, M.; Grossman, J. C., Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13 (8), 3664-3670.
    15. Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H., Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8 (8), 8317-8322.
    16. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; Cobden, D. H.; Xu, X., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9 (4), 268-272.
    17. Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y.-H.; Zhang, L.; Li, L.-J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; Maier, S. A.; Yang, J. K. W.; Qiu, C.-W.; Wee, A. T. S., Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun. 2016, 7 (1), 11283.
    18. Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J., Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8 (7), 966-971.
    19. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24 (17), 2320-2325.
    20. Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4 (20), 6637-6641.
    21. Coehoorn, R.; Haas, C.; Degroot, R. A., Electronic-structure of MoSe2, MoS2, and WSe2 .2. The nature of the optical band-gaps. Phys. Rev. B 1987, 35 (12), 6203-6206.

    22. Li, D. H.; Cheng, R.; Zhou, H. L.; Wang, C.; Yin, A. X.; Chen, Y.; Weiss, N. O.; Huang, Y.; Duan, X. F., Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 2015, 6.
    23. Zhang, R.; Koutsos, V.; Cheung, R., Elastic properties of suspended multilayer WSe2. Appl. Phys. Lett. 2016, 108 (4), 042104.
    24. Cohen, S. R.; Rapoport, L.; Ponomarev, E. A.; Cohen, H.; Tsirlina, T.; Tenne, R.; Levy-Clement, C., The tribological behavior of type II textured MX2 (M = Mo, W, X = S, Se) films. Thin Solid Films 1998, 324 (1-2), 190-197.
    25. Sadale, S. B.; Barman, S. R.; Patil, P. S., Formation of perpendicular to c texture of tungsten disulfide thin films with nickel. Appl. Surf. Sci. 2007, 253 (7), 3489-3495.
    26. Jagerwaldau, A.; Bucher, E., WSe2 thin-films prepared by soft selenization. Thin Solid Films 1991, 200 (1), 157-164.
    27. Salitra, G.; Hodes, G.; Klein, E.; Tenne, R., Highly oriented WSe2 thin-films prepared by selenization of evaporated WO3. Thin Solid Films 1994, 245 (1-2), 180-185.
    28. Tsirlina, T.; Lyakhovitskaya, V.; Fiechter, S.; Tenne, R., Study on preparation, growth mechanism, and optoelectronic properties of highly oriented WSe2 thin films. J. Mater. Res. 2000, 15 (12), 2636-2646.
    29. Castellanos-Gomez, A., Why all the fuss about 2D semiconductors? Nat. Photonics 2016, 10 (4), 202-204.
    30. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5 (4), 263-275.
    31. Kuc, A.; Heine, T., The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 2015, 44 (9), 2603-2614.
    32. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (30), 10451-10453.
    33. Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T., Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 2016, 16 (2), 1359-1366.
    34. Tang, D. M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J.; Golberg, D., Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5.
    35. Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J.; Yang, T.; Englund, D.; Gao, H.-J.; Sutter, P., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9 (11), 10612-10620.

    36. Fan, X.; Xu, P.; Li, Y. C.; Zhou, D.; Sun, Y.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E., Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 2016, 138 (15), 5143-5149.
    37. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv. 2015, 5 (92), 75500-75518.
    38. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13 (3), 1341-1347.
    39. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y., Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135 (14), 5304-5307.
    40. Boscher, N. D.; Carmalt, C. J.; Parkin, I. P., Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces. J. Mater. Chem. 2006, 16 (1), 122-127.
    41. Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8 (1), 923-930.
    42. Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y.; Zhou, C., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9 (6), 6119-6127.
    43. Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S.; Jeong, H. Y.; Loh, K. P., Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27 (42), 6722-+.
    44. Liu, J. X.; Zeng, M. Q.; Wang, L. X.; Chen, Y. T.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J. L.; Nan, F.; Mendes, R. G.; Chen, S. L.; Ren, F.; Wang, Q. Q.; Rummeli, M. H.; Fu, L., Ultrafast self-limited growth of strictly monolayer WSe2 crystals. Small 2016, 12 (41), 5741-5749.
    45. Li, H.; Li, Y.; Aljarb, A.; Shi, Y.; Li, L.-J., Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118 (13), 6134-6150.
    46. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L.; Lin, H.; Jeng, H. T.; Mo, S. K.; Hussain, Z.; Bansil, A.; Shen, Z. X., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9 (2), 111-115.
    47. Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N., Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6 (4), 3468-3480.
    48. Zheng, J.; Zhang, H.; Dong, S. H.; Liu, Y. P.; Nai, C. T.; Shin, H. S.; Jeong, H. Y.; Liu, B.; Loh, K. P., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 5.
    49. Dines, M. B., Lithium intercalation via N-butyllityium of layered transition-metal dichalcogenides. Mater. Res. Bull. 1975, 10 (4), 287-291.
    50. Ma, Y. G.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W., Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9 (7), 7383-7391.
    51. Sandoval, S. J.; Yang, D.; Frindt, R. F.; Irwin, J. C., Raman-study and lattice-dynamics of single molecular layers of MoS2. Phys. Rev. B 1991, 44 (8), 3955-3962.
    52. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11 (12), 5111-5116.
    53. Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H., An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem.-Int. Edit. 2012, 51 (36), 9052-9056.
    54. Liu, N.; Kim, P.; Kim, J. H.; Ye, J. H.; Kim, S.; Lee, C. J., Large-area atomically thin mos2 nanosheets prepared using electrochemical exfoliation. ACS Nano 2014, 8 (7), 6902-6910.
    55. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6 (8), 7311-7317.
    56. Mattevi, C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21 (10), 3324-3334.
    57. Bell, J. M.; Ruiz, I.; Ozkan, C.; Ozkan, M.; George, A.; Hosseinbay, H., The effect of fluid mechanics on graphene growths by chemical vapor deposition. In Carbon Nanotubes, Graphene, and Associated Devices Vi, Pribat, D.; Lee, Y. H.; Razeghi, M.; Baik, S., Eds. Spie-Int Soc Optical Engineering: Bellingham, 2013; Vol. 8814.
    58. Novoselov, K. S., Nobel Lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 2011, 83 (3), 837-849.
    59. Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J., Component-controllable WS2(1-x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8 (8), 8468-8476.
    60. Nguyen, E. P.; Carey, B. J.; Daeneke, T.; Ou, J. Z.; Latham, K.; Zhuiykov, S.; Kalantar-zadeh, K., Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem. Mat. 2015, 27 (1), 53-59.
    61. Chen, Y. Z.; Medina, H.; Su, T. Y.; Li, J. G.; Cheng, K. Y.; Chiu, P. W.; Chueh, Y. L., Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted selenization process. ACS Nano 2015, 9 (4), 4346-4353.
    62. Medina, H.; Li, J. G.; Su, T. Y.; Lan, Y. W.; Lee, S. H.; Chen, C. W.; Chen, Y. Z.; Manikandan, A.; Tsai, S. H.; Navabi, A.; Zhu, X. D.; Shih, Y. C.; Lin, W. S.; Yang, J. H.; Thomas, S. R.; Wu, B. W.; Shen, C. H.; Shieh, J. M.; Lin, H. N.; Javey, A.; Wang, K. L.; Chueh, Y. L., Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mat. 2017, 29 (4), 1587-1598.
    63. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.
    64. Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K. H.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K.; Chernikov, A.; Zhao, H.; McDonnell, S.; Lindenberg, A. M.; Xiao, K.; LeRoy, B. J.; Drndic, M.; Hwang, J. C. M.; Park, J.; Chhowalla, M.; Schaak, R. E.; Javey, A.; Hersam, M. C.; Robinson, J.; Terrones, M., 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3 (4).
    65. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C., 2D materials and van der Waals heterostructures. Science 2016, 353 (6298).
    66. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H.; Sindoro, M.; Zhang, H., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117 (9), 6225-6331.
    67. Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G.; Ward, T. Z.; Rack, P. D., High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11 (2), 722-730.
    68. Lee, I.; Rathi, S.; Li, L.; Lim, D.; Khan, M. A.; Kannan, E. S.; Kim, G. H., Non-degenerate n-type doping by hydrazine treatment in metal work function engineered WSe2 field-effect transistor. Nanotechnology 2015, 26 (45).
    69. Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y., Carrier Type Control of WSe2 Field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26 (23), 4223-4230.
    70. Kovacevic, G.; Pivac, B., Structure, defects, and strain in silicon-silicon oxide interfaces. J. Appl. Phys. 2014, 115 (4).
    71. Tsai, C.; Chan, K. R.; Abild-Pedersen, F.; Norskov, J. K., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys. Chem. Chem. Phys. 2014, 16 (26), 13156-13164.
    72. Nguyen, N. T.; Berseth, P. A.; Lin, Q.; Chiritescu, C.; Cahill, D. G.; Mavrokefalos, A.; Shi, L.; Zschack, P.; Anderson, M. D.; Anderson, I. M.; Johnson, D. C., Synthesis and properties of turbostratically disordered, ultrathin WSe2 films. Chem. Mat. 2010, 22 (9), 2750-2756.
    73. Gremenok, V. F.; Zaretskaya, E. P.; Zalesski, V. B.; Bente, K.; Schmitz, W.; Martin, R. W.; Moller, H., Preparation of Cu(In,Ga)Se-2 thin film solar cells by two-stage selenization processes using N-2 gas. Solar Energy Materials and Solar Cells 2005, 89 (2-3), 129-137.
    74. Cai, C. H.; Chen, R. Z.; Chan, T. S.; Lu, Y. R.; Huang, W. C.; Yen, C. C.; Zhao, K.; Lo, Y. C.; Lai, C. H., Interplay between potassium doping and bandgap profiling in selenized Cu(In,Ga)Se-2 solar cells: A functional CuGa: KF surface precursor layer. Nano Energy 2018, 47, 393-400.
    75. Emori, S.; Beach, G. S. D., Optimization of out-of-plane magnetized Co/Pt multilayers with resistive buffer layers. J. Appl. Phys. 2011, 110 (3).
    76. Yin, Y.; Miao, P.; Zhang, Y. M.; Han, J. C.; Zhang, X. H.; Gong, Y.; Gu, L.; Xu, C. Y.; Yao, T.; Xu, P.; Wang, Y.; Song, B.; Jin, S., Significantly increased raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition. Adv. Funct. Mater. 2017, 27 (16).
    77. Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. R., Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angewandte Chemie 2013, 125 (49), 13295-13299.
    78. Ambrosi, A.; Sofer, Z.; Pumera, M., 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51 (40), 8450-8453.
    79. Su, S.; Zhang, C.; Yuwen, L.; Liu, X.; Wang, L.; Fan, C.; Wang, L., Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale 2016, 8 (1), 602-608.
    80. del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A., Excited excitonic states in 1L, 2L, 3L, and Bulk WSe2 observed by resonant raman spectroscopy. ACS Nano 2014, 8 (9), 9629-9635.
    81. Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5 (20), 9677-9683.
    82. Kruskopf, M.; Pakdehi, D. M.; Pierz, K.; Wundrack, S.; Stosch, R.; Dziomba, T.; Gotz, M.; Baringhaus, J.; Aprojanz, J.; Tegenkamp, C.; Lidzba, J.; Seyller, T.; Hohls, F.; Ahlers, F. J.; Schumacher, H. W., Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2D Mater. 2016, 3 (4).
    83. Medina, H.; Li, J.-G.; Su, T.-Y.; Lan, Y.-W.; Lee, S.-H.; Chen, C.-W.; Chen, Y.-Z.; Manikandan, A.; Tsai, S.-H.; Navabi, A.; Zhu, X.; Shih, Y.-C.; Lin, W.-S.; Yang, J.-H.; Thomas, S. R.; Wu, B.-W.; Shen, C.-H.; Shieh, J.-M.; Lin, H.-N.; Javey, A.; Wang, K. L.; Chueh, Y.-L., Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mat. 2017, 29 (4), 1587-1598.
    84. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3 (9), 563-568.
    85. Luo, X.; Zhao, Y.; Zhang, J.; Toh, M.; Kloc, C.; Xiong, Q.; Quek, S. Y., Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B 2013, 88 (19), 195313.
    86. Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4 (20), 6637-6641.
    87. Paul, S.; Kanwal, A.; Chhowalla, M., Memory effect in thin films of insulating polymer and C60 nanocomposites. Nanotechnology 2005, 17 (1), 145-151.
    88. Cook, J. B.; Kim, H.-S.; Lin, T. C.; Lai, C.-H.; Dunn, B.; Tolbert, S. H., Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Advanced Energy Materials 2017, 7 (2), 1601283.
    89. Fowler, B. W.; Chang, Y.-F.; Zhou, F.; Wang, Y.; Chen, P.-Y.; Xue, F.; Chen, Y.-T.; Bringhurst, B.; Pozder, S.; Lee, J. C., Electroforming and resistive switching in silicon dioxide resistive memory devices. RSC Adv. 2015, 5 (27), 21215-21236.
    90. Du, Y.; Pan, H.; Wang, S.; Wu, T.; Feng, Y. P.; Pan, J.; Wee, A. T. S., Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 2012, 6 (3), 2517-2523.
    91. Wang, Y.; Li, L.; Yao, W.; Song, S.; Sun, J. T.; Pan, J.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y.-Q.; Wang, E.; Shao, Y.; Zhang, Y. Y.; Yang, H.-t.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Taniguchi, M.; Cheng, Z.; Zhou, S.; Du, S.; Pennycook, S. J.; Pantelides, S. T.; Gao, H.-J., Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15 (6), 4013-4018.
    92. Zhang, Y. J.; Yoshida, M.; Suzuki, R.; Iwasa, Y., 2D crystals of transition metal dichalcogenide and their iontronic functionalities. 2D Mater. 2015, 2 (4).
    93. Koma, A., Vanderwaals epitaxy - A new epitaxial-growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216 (1), 72-76.
    94. Fei, L.; Lei, S.; Zhang, W.-B.; Lu, W.; Lin, Z.; Lam, C. H.; Chai, Y.; Wang, Y., Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7 (1), 12206.
    95. Entani, S.; Takizawa, M.; Li, S. T.; Naramoto, H.; Sakai, S., Growth of graphene on SiO2 with hexagonal boron nitride buffer layer. Appl. Surf. Sci. 2019, 475, 6-11.
    96. Bakti Utama, M. I.; Zhang, Q.; Zhang, J.; Yuan, Y.; Belarre, F. J.; Arbiol, J.; Xiong, Q., Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale 2013, 5 (9), 3570-3588.
    97. Vullers, F. T. N.; Spolenak, R., Alpha- vs. beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials' properties. Thin Solid Films 2015, 577, 26-34.
    98. Vink, T. J.; Walrave, W.; Daams, J. L. C.; Dirks, A. G.; Somers, M. A. J.; Vandenaker, K. J. A., Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering. J. Appl. Phys. 1993, 74 (2), 988-995.
    99. Shen, Y. G.; Mai, Y. W., Influences of oxygen on the formation and stability of A15 beta-W thin films. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2000, 284 (1-2), 176-183.
    100. Choi, D.; Wang, B. C.; Chung, S.; Liu, X.; Darbal, A.; Wise, A.; Nuhfer, N. T.; Barmak, K.; Warren, A. P.; Coffey, K. R.; Toney, M. F., Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films. J. Vac. Sci. Technol. A 2011, 29 (5).
    101. Lee, J. S.; Cho, J.; You, C. Y., Growth and characterization of alpha and beta-phase tungsten films on various substrates. J. Vac. Sci. Technol. A 2016, 34 (2).
    102. Okeefe, M. J.; Grant, J. T., Phase transformation of sputter deposited tungsten thin films with A-15 structure. J. Appl. Phys. 1996, 79 (12), 9134-9141.
    103. Bernede, J. C.; Benhida, S., Primary and secondary crystallization processes of WSe2 films. J. Mater. Sci. 1994, 29 (22), 5972-5974.
    104. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
    105. Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P., Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21 (3), 956-961.
    106. Otten, A.; Herminghaus, S., How plants keep dry: A physicist's point of view. Langmuir 2004, 20 (6), 2405-2408.
    107. Jeong, H. J.; Kim, D. K.; Lee, S. B.; Kwon, S. H.; Kadono, K., Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane. J. Colloid Interface Sci. 2001, 235 (1), 130-134.
    108. Wenzel, R. N., Surface roughness and contact angle. The Journal of Physical and Colloid Chemistry 1949, 53 (9), 1466-1467.
    109. Annamalai, M.; Gopinadhan, K.; Han, S. A.; Saha, S.; Park, H. J.; Cho, E. B.; Kumar, B.; Patra, A.; Kim, S.-W.; Venkatesan, T., Surface energy and wettability of van der Waals structures. Nanoscale 2016, 8 (10), 5764-5770.
    110. Patankar, N. A., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 2003, 19 (4), 1249-1253.

    QR CODE