研究生: |
柯志諭 Ko, Chih-Yu |
---|---|
論文名稱: |
氫氧化鎳修飾奈米鑽石薄膜開發高靈敏度非酵素型生物感測電極之應用 Nickel Hydroxide Modified Nanodiamond Film for Application in Highly Sensitive Nonenzymous Biosensors |
指導教授: |
黃金花
Huang, Jin-Hua |
口試委員: |
黃金花
Huang, Jin-Hua 吳禹利 Wu, Yu-Li 陳彥旭 Chang, Yen-Hsu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 氫氧化鎳 、氮摻雜 、奈米鑽石 、電化學 、非酵素型 、生物感測器 、胺基酸 、葡萄糖 |
外文關鍵詞: | nickel hydroxide, nitrogen-doped, nanodiamond, electrochemistry, biosensor, amino acid, glucose |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用氮摻雜奈米鑽石(nitrogen-doped nanodiamond, NND)薄膜為基板,以電子束蒸鍍鎳金屬薄膜於其表面,再利用循環伏特安培法(cyclic voltammetry, CV)表面成長氫氧化鎳(nickel hydroxide, Ni(OH)2)作為催化劑,完成氫氧化鎳(II)修飾鑽石電極(Ni(OH)2-NND)的製備。利用奈米鑽石電極本身大量奈米結構特徵,促使沉積之Ni(OH)2依附其構造而顯現特殊的奈米結構,使其針對非電化學活性胺基酸類神經傳導物質:D-絲胺酸(D-serine, Ser)、L-甘胺酸(L-glycine, Gly)、L-天門冬胺酸(L-aspartic acid, Asp)與γ-胺基丁酸(γ-aminobutyric acid, GABA)以及葡萄糖,有極佳的電催化效應。此非酵素型電極配合CV以及計時安培法(chronoamperometry, CA)兩種電化學分析技巧偵測上述分子,可證明其反應機制均屬於擴散控制,故Ni(OH)2-NND之特殊微結構與高粗糙度、高活性面積可有效促進分子擴散而有極佳的量測訊號。此外,此特徵結構也使電極維持高活性Ni(OH)2狀態,不需繁複的電極活化處理即可快速進行檢測。
對不同鎳厚度修飾之Ni(OH)2-NND進行分析,發現以150 nm鎳修飾之電極,其表面表現大量微結構特徵而有最佳偵測訊號。以CV偵測Ser,在反應濃度20讣350 贡M間靈敏度可高達2500 贡A mM-1cm-2,最低偵側濃度估計為3.8 贡M(信號/雜訊比值3)。以CA偵測葡萄糖,靈敏度在反應濃度20讣1000 贡M及1讣9 mM之間分別為3200與1406 贡AmM-1cm-2,最低偵側濃度為1.5 贡M,且對尿酸(uric acid, UA)、乙醯胺酚(acetaminophen, AC)與抗壞血酸(ascorbic acid, AA)等干擾物有極佳的干擾阻抗能力。另外,對電極在長時間使用以及大氣中存放的測試,證明Ni(OH)2-NND穩定度極高。最後,以掃描式電子顯微鏡分析其表面形貌,並使用拉曼光譜分析其鑽石電極的化學組成。
In this research, nickel films with different thicknesses were deposited by electron-beam evaporation on nitrogen-doped nanodiamond (NND) substrates and then reacted to nickel hydroxide, Ni(OH)2 by cyclic voltammetry (CV) in alkaline solution. The morphology of Ni(OH)2 modified NDD electrodes was composed of sponge-like micro-structure and a large number of nano-spheres. The Ni(OH)2-NND exhibited high electrocatalysis ability to electroinactive amino acids such as D-serine (Ser), L-glycine (Gly), L-aspartic acid (Asp) and 讪-aminobutyric acid (GABA), which are key neurotransmitters in central nervous system of mankind. In addition, glucose could be also electrocatalyzed with great ease on Ni(OH)2-NND electrodes. The reaction mechanisms of above molecules on Ni(OH)2-NND were all determined to be the diffusion-controlled reaction by CV and chronoamperometry (CA). This outstanding electrocatalysis behavior could be ascribed to promoted heterogeneous diffusion by the feature structure and large active surface area of Ni(OH)2-NND. Besides, the Ni(OH)2-NND could be applied to instant measurements without any complex pre-treatment for Ni(OH)2 enrichment.
The dependence of Ni thickness on the electrocatalysis of Ni(OH)2-NND was investigated, and the result showed that the 150 nm Ni was superior to other thicknesses for detection to above molecules. The measurements conducted by CV in alkaline solution were used to define the sensitivities and linear dynamic ranges of those amino acids. The sensitivity to Ser response was up to 2.5 贡AmΜ-1cm-2 within the range from 20 to 350 贡M, and the limit of detection (LOD) was estimated to be 3.8 贡M at a signal-to-noise ratio of 3. As for glucose sensing, the sensitivity was around 3200 贡AmΜ-1cm-2 within the range from 20 to 1000 贡M and 1406 贡AmΜ-1cm-2 from 1 to 9 mM, with LOD of 1.5 贡Μ. The electrode also exhibited stable responses to glucose while interfered by species including ascorbic acid (AA), uric acid (UA) and acetaminophen (AC) which are common compounds in blood samples. Besides, the electrodes were stored in air for more than two months to examine the long-term stability of electrodes. The Ni(OH)2-NND electrodes were characterized by scanning electron microscopy and Raman spectroscopy.
[1] L. C. Clark, C. Lyons, Ann. N.Y. Acad. Sci. 102 (1962) 29.
[2] B. Danielsson, K. Mosbach, Oxford University Press, New York, 1989.
[3] H. H. Weetall, Biosens. Bioelectron. 11 (1996) 1.
[4] S. Shunzo, O. Yasushi, T. Hisashi, K. Hiroshi, N. Katsuhiko, Electrochim. Acta 45 (2000) 3813.
[5] J. Zhang, L. Bao, S. Yao, W. Wei, Microchem. J. 62 (1999) 405.
[6] J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochim. Acta 46 (2000) 509.
[7] B. Keita, L. Nadjo, D. Belanger, C. P. Wilde, M. Hilaire, J. Electroanal. Chem. 384 (1995) 155.
[8] C. Serge, Biosens. Bioelectron. 14 (1999) 443.
[9] M. I. Arben, F. Esteve, A. Salvador, Sens. Actuators B 60 (1999) 97.
[10] A. T. Linda, D. K. Keeley, P. A. George, S. L.Frances, Anal. Biochem. 233 (1996) 50.
[11] R. P. O. Ma, M. Hämäläinen, U. H. Danielson, Anal. Biochem. 279 (2000) 71.
[12] A. Sternesjo, Anal. Chem. 226 (1995) 175.
[13] S.V. Dzyadevych , V. N. Arkhypova, A. P. Soldatkin, A. V. El’skaya, C. Martelet, N. J. Renault, ITBM-RBM 29 (2008) 171.
[14] A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications ”,John Wiley & Sons, Singapore ,1980.
[15] 胡啟章,電化學原理與方法,五南圖書出版公司,2002.
[16] R. L. McCreery, Chem. Rev. 108 (2008) 2646.
[17] K. S. Pitzer, “Activity Coefficients in Electrolyte Solutions”, 2nd Edition, CRC Press, Inc. 2000.
[18] F. Scholz, “Electroanalytical Methods Guide to Experiments and Applications”, Springer, Berlin, 2002.
[19] A. J. Bard, I. Rubinstein, “Electroanalytical Chemistry”, Dekker, New York, Vol. 22, 2004.
[20] W. Zhao, J. J. Xu, Q. Q. Qiu, H. Y. Chen, Biosens. Bioelectron. 22 (2006) 649.
[21] A. E. Fischer, Y. Show, G. M. Swain, Anal. Chem. 76 (2004) 2553.
[22] Q. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, G. M. Swain, J. Electrochem. Soc. 148 (2001) E44.
[23] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Anal. Chem. 72 (2000) 3793.
[24] A. E. Fischer, M. A. Lowe, G. M. Swain, J. Electrochem. Soc. 154 (2007) K61.
[25] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Appl. Phys. Letts. 79 (2001) 10.
[26] Y. V. Pleskov, M. D. Krotova, A. V. Saveliev, V. G. Ralchenko, Diamond Relat. Mater. 16 (2007) 2114.
[27] T. Yano, D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc. 145 (1998) 1870.
[28] T. Yano, E. Popa, D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc. 146 (1999) 1081.
[29] F. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, C. L. Clement, J. Electroanal. Chem. 405 (1996) 95.
[30] Z.Y. Wu, T. Yano, D.A. Tryk, K. Hashimoto, A. Fujishima, Chem. Lett. (1998) 503.
[31] J. Xu, Q. Chen, G.M. Swain, Anal. Chem. 70 (1998) 3146.
[32] R. D. Clements, G. M. Swain, J. Electrochem. Soc. 144 (1997) 856.
[33] T. N. Rao, I. Yagi, T. Miwa, D. A. Tryk, A. Fujishima, Anal. Chem. 71 (1999) 2506.
[34] J. J. Lee, B. Miller, X. Shi, R. Kalish, K. A. Wheelerd, J. Electrochem. Soc. 148 (2001) C183.
[35] J. Stotter, Y. Show, S. Wang, G. Swain, Chem. Mater. 17 (2005) 4880.
[36] H. B. Martin, A. Argoitia, J. C. Angus, U. Landau, J. Electrochem. Soc. 146 (1999) 2959.
[37] S. Wang and G. M. Swain, J. Phys. Chem. C 111 (2007) 3986.
[38] M. A. Lowe, A. E. Fischer, G. M. Swain, J. Electrochem. Soc. 153 (2006) B506.
[39] . Farrell, F. J. Martin, H. B. Martin, W. E. O’Grady, P. Natishan, J. Electrochem. Soc. 152 (2005) E14.
[40] Y. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova, V. P. Varnin, I. G. Teremetskaya, J. Electroanal. Chem. 595 (2006) 168.
[41] T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einag, Diamond Relat. Mater. 13 (2004) 2003.
[42] T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Anal. Chem. 78 (2006) 6291.
[43] T. Watanabe, T. A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga, Anal. Chem. 78 (2006) 7857.
[44] Y. Yamaguchi, Y. Yamanaka, M. Miyamoto, A. Fujishima, K. Honda, J. Electrochem. Soc. 153 (2006) J123.
[45] K. Arihara, C. Terashima, A. Fujishima, J. Electrochem. Soc. 154 (2007) E71.
[46] D. Sopchak, B. Miller, R. Kalish, Y. Avyigal, X. Shi, Electroanal. 14 (2002) 473.
[47] 詹佩璇,神經生物學,合記圖書出版社,2004
[48] 麥麗敏,漫畫神經系統與特殊感覺,合記圖書出版社,2000
[49] K. Sato, J. Y. Jin, T. Takeuchi, T. Miwa, Y. Takekoshi, S. Kanno, S. Kawase, Talanta 53 (2000) 1037.
[50] H. Heli, M. Hajjizadeh, A. Jabbari, A. A. M. Movahedi, Anal. Biochem. 388 (2009) 81.
[51] G. L. Luque, N. F. Ferreyra, G. A. Rivas, Talanta 71 (2007) 1282.
[52] A. S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, G. L. Luque, N. F. Ferreyra, G. A. Rivas, Anal. Chim. Acta 577 (2006) 183.
[53] I. G. Casella, T. R. I. Cataldi, A. Guerrieri, E. Desimonib, Anal. Chim. Acta 335 (1996) 217.
[54] J. Labuda, A. Meister, P. Gläser, G. Werner, Fresenius J. Anal. Chem. 360 (1998) 6548.
[55] Q. Yi, W. Huang, W. Yu, L. Li, X. Liu, Electroanalysis 20 (2008) 2016.
[56] Y. Mu, D. Ji, Y. He, Y. Miao, H. L. Wu, Biosens. Bioelectrons. 26 (2011) 2948.
[57] J. F. Huang, Chem. Commun. (2009) 1270.
[58] W. D. Zhang, J. Chen, L. C. Jiang, Microchim. Acta 168 (2010) 259.
[59] S. S. Mahshid, S. Mahshid, L. Yang, A. Dolati, Electrochem. Soc. (2011) 219th ECS Meeting.
[60] D. Rathoda, C. Dickinsonb, D. Egana, E. Dempseya, Sensor. Actuat. B 143 (2010) 547.
[61] L. M. Lu, L. Zhang, F. Li. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q. A. Wang, G. L. Shen, R. Q. Yu, Biosens. Bioelectrons. 25 (2009) 218.
[62] K. E. Toghill, L. Xiao, M. A. Phillips, R. G. Compton, Sensor. Actuat. B 147 (2010) 642.
[63] F. Sun, L. Li, P. Liu, Y. Lian, Electroanalysis 23 (2011) 395.
[64] W. Wang, L. Zhang, S. Tong, X. Li, W. Song, Biosens. Bioelectrons. 25 (2009) 708.
[65] Y. Liua, H. Tengb, H. Houc, T. Youa, Biosens. Bioelectrons 24 (2009) 3329.
[66] E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis 20 (2008) 2482.
[67] Y. Myung, D. M. Jang, Y. J. Cho, H. S. Kim, J. Park, J. Phys. Chem. C 113 (2009) 1251.
[68] K. B. Male, S. Hrapovic, Y. Liu, D. Wang, J. H.T. Luong, Anal. Chim. Acta 516 (2004) 35.
[69] R. Barnard, C. F. Randell, F. L. Tye, J. Appl. Electrochem. 10 (1980) 109.
[70] J. Chen, D. H. Bradhurst, S. X. Dou, H. K. Liu, J. Electrochem. Soc. 146 (1999) 3606.
[71] H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11 (1966) 1079.
[72] P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. D. Guibert, J. Power Sources 8 (1982) 229.
[73] R. S. S. Guzman, J. R. Vilche, A. J. Arvia, J. Appl. Electrochem. 8 (1978) 67.
[74] M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, J. Solid-State Electrochem. 13 (2009) 1171.
[75] M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc. Perkin Trans. 2 (1972) 1396.
[76] C. Schonenberger, Z. Vander, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101 (1997) 5497.
[77] Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J. 11 (2005) 2177.
[78] J. H. Yuan, K. Wang, X. H. Xia, Adv. Funct. Mater. 15 (2005) 803.
[79] S. J. Park, H. K. Boo, T. D. Chung, Anal. Chim. Acta 556 (2006) 46.
[80] M. D. Leo, A. Kuhn, P. Ugo, Electroanalysis 19 (2007) 227.
[81] C. Z. Zhao, C. L. Shao, M.H. Li, K. Jiao, Talanta 71 (2007) 1769.
[82] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectrons. 24 (2009) 1655.
[83] L. M. Zhang, L. Qu, F. L. Lu, H. X. Zhang, X. B. Wu, Z. S. Huan, S. Y. Wang, S. Mho, D. C. Johnson, J. Electroanal. Chem. 500 (2001) 524.
[84] L. Huang, S. Xu, S. Zhou, Chem. J. Chinese Universities 6 (1997) 932.
[85] Y. Bai, Y. Sun, C. Sun, Biosens. Bioelectron. 24 (2008) 579.
[86] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem. 81(2009) 7271.
[87] J. Yuan, K. Wang, X. Xia, Adv. Funct. Mater. 15 (2005) 803.
[88] K. E. Toghill, R. G. Compton, Int. J. Electrochem. Sci. 5 (2010) 1246.
[89] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 17 (2008) 790.
[90] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 19 (2010) 256.
[91] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 18 (2009) 718.
[92] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 18 (2009) 574.
[93] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 17 (2008) 896.
[94] A. Sen, S. Barizuddin, M. Hossain, L. P. Parada, K. D. Gillis, S. Gangopadhyay,
Biomaterials 30 (2009) 1604.
[95] N.W. Khun, E. Liu, X.T. Zeng, Corro. Sci. 51 (2009) 2158.
[96] N. Menegazzo, M. Kahn, R. Berghauser, W. Waldhauser, B. Mizaikoff, Analyst
136 (2011) 1831.
[97] Q. Hu, M. Hirai, R. K. Joshi, A. Kumar, J. Phys. D: Appl. Phys. 42 (2009) 025301.
[98] F. A. M. Koeck, R. J. Nemanich, Diam. Relat. Mater. 18 (2009) 232.