簡易檢索 / 詳目顯示

研究生: 柳易廷
論文名稱: 直徑2.5公分變焦2 D介電式液態透鏡
Dielectric Liquid Lens of 2.5 cm in Diameter with 2 Diopter Focal Changing
指導教授: 葉哲良
口試委員: 楊燿州
黃國政
蔡智偉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 介電式液態透鏡大尺寸可變焦
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 眼睛為人類最主要的器官之一,隨著年齡增長,眼球內主要調變焦距的構造─水晶體將逐漸硬化失去彈性而無法自動調整焦距,使看近物時變得模糊,此現象稱為老花眼(Presbyopia),在看不同距離的物體時,需要的眼鏡屈光度不同因此必須更換不同焦距的眼鏡,使用上十分不方便,所以需要可變焦透鏡來改善此問題。
    本論文將利用介電式液態透鏡之技術製作大尺寸的介電式液態透鏡,主要構造為兩不互溶、不同介電常數、不同折射率、相同密度的溶液,當外加電壓通過兩液體界面時,由介電常數差產生的介電力將使液體界面形變,改變曲率而調變焦距。大尺寸介電式液態透鏡未來將應用於製造可變焦老花眼鏡。
    本實驗成功的製作出透光孔徑2.5公分、屈光度變化量2.6 D、驅動電壓40 V、反應時間30秒的介電式液態透鏡。但由於連續變化焦距之透鏡無法準確地停留在特定的位置,在調變的過程中發現液珠邊緣呈波浪狀,因此設計了第二代的階段式電極,使調變的過程中液珠的形狀能均勻而平滑,而本論文的階段式電極透光孔徑為2.6公分、每段屈光度變化分別為0.228 D、0.324 D、0.316 D、0.367 D,屈光度總變化量為1.24 D、驅動電壓30~40 V。


    目錄 摘要 i Abstract ii 圖目錄 v 表目錄 viii 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 變焦液態透鏡 4 1.3.2 改變折射率之變焦透鏡 5 1.3.3 改變曲率之變焦透鏡 11 1.4 研究目標 18 1.5 論文架構 19 第二章 理論 21 2.1 眼鏡設計 21 2.2 雙液體系統 23 2.3 液態透鏡驅動原理 24 第三章 實驗設計 27 3.1 電極設計 27 3.2 電極製程 33 3.3 實驗架構 37 3.3.1 液體調配 37 3.3.2 封裝外殼設計 38 3.3.3 驅動測試系統 40 3.3.4 封裝流程 41 第四章 實驗結果 43 4.1 焦距量測 43 4.2 連續電極實驗測試 50 4.3 定變焦電極實驗測試 54 第五章 實驗結果與討論 58 5.1 電極設計與製程 58 5.2 液體與封裝 64 5.3 成像結果 68 第六章 結論 75 參考文獻 77

    1. 王光霽、卓達雄, 視光學基礎. 新文京出版社2007.
    2. R. C. Ghanem, J. d. l. C., F. M. Tobaigy, L. P. K. Ang, and D. T. Azar, LASIK in the Presbyopic Age Group : Safety, Efficacy, and Predictability in 40-to 69-Year-Old Patients. Ophthalmic 2007, 114, 1303-1310.
    3. Ridley, H., History of Intraocular Lenses: Triumphs and Tribulations. Major Review 2009, 20, 71.
    4. Tseng, H. C. Dielectric liquid lens of 3 centimeter diameter. National Tsing Hua University2011.
    5. R. E. Fisher, B. T.-G., and P. R. Yoder, Optical system design. 2 ed.; Mc Graw Hill2008.
    6. Sato, S., Liquid-crystal lens cells with variable focal length. Applied Physics 1979, 18, 1679-1684.
    7. T. H. Lin, Y. H., A. Y. G. Fuh, and S. T. Wu, Polarization controllable Fresnel lens using dye-doped liquid crystals. Opt Express 2006, 14, 2359-2364.
    8. Shanzuo Ji, M. P., Richard S. Lepkowicz, Armand Rosenberg, Richard Flynn, Guy Beadie, and Eric Baer, A bio-inspired polymeric gradient refractive index (GRIN) human eye lens. Opt Express 2012, 20, 26746-26754.
    9. Kang, K. H., How electrostatic fields change contact angle in electrowetting. Langmuir 2002, 18, 10318-10322.
    10. https://en.wikipedia.org/wiki/Gradient-index_optics.
    11. G. Li, D. L. M., P. VALLEY, P. AYRAS, J. N. HADDOCK, M. GIRIDHAR, G. WILLIBY, J. SCHWIEGERLING, G. R. MEREDITH, and B. KIPPELEN,, Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 6100-6104.
    12. G. Li, P. V., P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures. Applied physics letters 2007, 90, 111105.
    13. G. Li, P. V., M. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, Large-aperture switchable thin diffractive lens with interleaved electrode patterns. Applied physics letters 2006, 89, 141120.
    14. N. Peyghambarian, G. L., D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. Haddock, G. Malalahalli, and B. Kippelen, Electro-optic adaptive lens as a new eyewear. Molecular Crystals and Liquid Crystals 2006, 454, 157-166.
    15. Y. H. Fan, H. R., and S. T. Wu, Electrically switchable Fresnel lens using a polymer-separated composite film. Optics Express 2005, 13, 4141.
    16. Rastani, J. S. P. a. K., Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. Optics letters 1991, 16, 532-534.
    17. Dance, B., Liquid crystal used in switchable Fresnel lens. Laser Focus World 1992, 28, 34.
    18. Hager, W. H., Wilfrid Noel Bond and the Bond number. Hydraulic Reasearch 2012, 3-9.
    19. Mingdao University Geometrical Optics.
    20. Silver, M. D. a. J., Self optimised vision correction with adaptive spectacle lenses in developing countries. Ophthalmic and Physiological Optics 2004, 24, 234-241.
    21. Kurtin, S. Variable focus spectacles. 2011.
    22. Epstein, S. K. a. S. Non-circular variable focus lens. 1994.
    23. Epstein, S. K. a. S. Variable spectacle lens. 2000.
    24. Kurtin, S. Variable focal length lens. 1992.
    25. S. Kurtin, D. E. F., and S. Epstein Type of magnetically attached auxiliary lens for spectacles. 1995.
    26. S. Kurtin, D. E. F., and S. Epstein Variable focal length lenses which have an arbitrarily shaped periphery. 1997.
    27. S. Kurtin, D. E. F., and S. Epstein Liquid-filled variable focus lens with band actuator. 1999.
    28. S. Kurtin, D. E. F., and S. Epstein Actuation mechanism for variable focus spectacles. 2006.
    29. Gun'ko, V. M.; Turov, V. V.; Krupska, T. V.; Ruban, A. N.; Kazanets, A. I.; Leboda, R.; Skubiszewska-Zieba, J., Interfacial behavior of silicone oils interacting with nanosilica and silica gels. Journal of Colloid and Interface Science 2013, 394, 467-474.
    30. Hendriks, S. K. a. B., Variable-focus liquid lens for miniature cameras. Applied physics letters 2004, 85, 1128.
    31. Peseux, B. B. a. J., Variable focal lens controlled by an external voltage: an application of electrowetting. The European Physical Journal E: Soft Matter and Biological Physics 2000, 3, 159-163.
    32. Lee, S. K. a. L. P., Focal length control by microfabricated planar electrodes-based liquid lens. in Transducers 2001, 10-14.
    33. Hendriks, S. K. a. B. H. W. Variable focus spectacles. 2009.
    34. C. C. Cheng, C. A. C., and J. A. Yeh, Variable focus dielectric liquid droplet lens. Optics Express 2006, 14, 4101-4106.
    35. C.G. Tsai, C. N. C., L.S. Cheng, C.C. Cheng, J.T. Yang, J.A. Yeh, Planar Liquid Confinement for Optical Centering of Dielectric Liquid Lenses. Ieee Photonic Tech L 2009, 21, 1396-1398.
    36. Hecht, E., Optics 2nd edition. Optics 2nd edition by Eugene Hecht Reading ed.; MA: Addison-Wesley Publishing Company1987; Vol. 1.
    37. Powlison, D., Seeing with new eyes: Counseling and the human condition through the lens of Scripture. P & R Pub2003.
    38. Morita, N. S. a. S., Variable focus liquid-filled optical lens. Appl. optical 1993, 32, 4181-4186.
    39. Jackson, J. D., Classical electrodynamics. 3 ed.; J. Wiley and sons1999.
    40. Kao, K. C., Dielectric phenomena in solid: with emphasis on physical concepts of electronic processes. Elsevier Academic Press, Chapter 22004.
    41. C.C. Cheng, J. A. Y., Dielectrically actuated liquid lens. Opt Express 2007, 15.
    42. Jones, T. B., An electromechanical interpretation of electrowetting. J Micromech Microeng 2005, 15, 1184-1187.
    43. Tsai, C. G. Studies of dielectric liquid lenses and irises. National Tsing Hua University2010.
    44. 蔡智偉. 介電式液態透鏡與光圈之研究. 國立清華大學, 新竹市, 2009.
    45. Li, R.-J. Inhibition of Emulsion in Dielectric Liquid Lens. National Tsing Hua University2009.
    46. Chin-Cheng Yang, C.-W. G. T., and J. Andrew Yeh, Member, ASME, Dynamic Behavior of Liquid Microlenses Actuated Using Dielectric Force. Microelectromechanical systems 2011, 20, 1143-1149.
    47. 卲穗鵬. 光學透鏡系統實例設計與評估. 國立中央大學2004.
    48. 孫文信. 精調三階像差各分項目標值的鏡組優化設計. 國立中央大學2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE