簡易檢索 / 詳目顯示

研究生: 林樹熙
Lin, Shu-Hsi
論文名稱: 真菌類聚酮合成酵素和基因強健性之演化研究
Evolutionary Studies of Fungal Polyketide Synthases and Genetic Robustness
指導教授: 呂平江
Lyu, Ping-Chiang
唐傳義
Tang, Chuan-Yi
口試委員: 有田正規
莊永仁
陳倩琪
Masanori Arita
Chen, Chien-Chi
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 136
中文關鍵詞: 二次代謝產物基因調控網路演化生物強健性聚酮
外文關鍵詞: Secondary metabolite, Genetic regulation network, Evolution, Biological robustness, Polykeitde
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚酮化合物是由聚酮合成酵素(polyketide synthease, PKS)透過逐步縮合反應催化產生的結構多樣之自然產物,主要被發現在微生物和植物中產生,並且廣泛運用在醫藥和農業上。聚酮合成酵素的基因會群集在一起形成基因簇,而且此類基因簇蘊含了與聚酮生物合成路徑與調控機制相關的龐大訊息。隨著基因體計畫的快速成長,聚酮合成酵素基因數據大量地增加,也因此促進了新生物活性化合物的開發和探討聚酮合成路徑之特性的研究。
    本論文研究著重於從演化的觀點來探討真菌第一型聚酮合成酵素基因、其合成酵素和相對應的代謝物結構關係。我們收集真菌的此類基因和相關產物資料,建立一個維基介面資料庫,其包含超過400個以上的聚酮合成酵素基因,並且針對8株基因定序完成的麴黴屬物種(Aspergillus),進行真菌迭代式第一型聚酮合成酵素基因的系统發育基因組學分析。由高保留度的聚酮合成酵素結構域建立的家族系譜顯示出清楚的系統發育分類關係,包含了三群較大的非還原聚酮合成酵素,兩群分別與細菌聚酮合成酵素和雜合型聚酮合成酵素/非核醣體胜肽合成酵素 [PKS/ NRPS)(nonribosomal peptide synthase)] 形成嵌套混合群 (nested clades)的部分還原聚酮合成酵素和超過十群較小的還原聚酮合成酵素。除此之外,我們發現雜合型非核醣體胜肽合成酵素/聚酮合成酵素的分支呈現為複系群(polyphyly),此現象可能與這兩種合成酵素如何結合的機制相關。總和來說,麴黴屬的第一型聚酮合成酵素基因呈現了高比率的基因重製和趨異。
    除此之外,為了表達真菌聚酮合成酵素基因,設計出更具效率且容易進行基因操作的異源表達宿主,我們探討分析酵母菌的基因強健機制。特別是,著重於轉錄修復在基因強健性中扮演的腳色,並利用酵母菌中非同源性合成致死 (synthetic-lethal)基因對的多種數據進行評估。我們認為非同源性基因造成的功能性緩衝有三個特徵: 有(i)合成致死交互作用, (ii) 高比例的共同交互作用搭檔,和(iii)共同調控的程度。結果也顯示轉錄重整程序(transcriptional reprogramming)對於非同源基因間功能性修復機制僅佔有很小的比例。
    綜合上面所述,此論文的研究分析促進我們對真菌聚酮合成酵素演化系統發育關係和功能修復機制的了解。維基介面的聚酮化合物資料庫將進一步整合各種聚酮化合物的數據,並預期將促進新生物活性產物的鑑定與應用。


    Polyketide synthases (PKS) catalyze stepwise condensation reactions of small carboxylic acid units to form structurally diverse natural products. The products, mainly found from microorganisms and plant, possess a wide range of important agriculture and pharmaceutical applications. PKS-encoding genes, located closely as a cluster, have been mined for immense information about polyketide biosynthesis and its regulation mechanisms. With the endeavor on genome projects, the increased availability of PKS gene data has enabled to discover new bioactive compound and to explore polyketide biosynthetic manner.
    The focus of the present thesis was the exploration the interrelationships between the fungal type I PKS genes, proteins and the corresponding metabolite structures from evolutionary perspectives. We created a wiki-based database to accommodate our publicly accessible and manually curated PKS gene data. With more than 400 PKS gene data in the database, we conducted a phylogenomic approach to investigate the distribution of iterative PKS genes from eight sequenced Aspergilli and other fungi. Their genealogy by the conserved ketosynthase (KS) domain unveiled the clear phylogenetic classification within three large groups of non-reducing PKS, two partial-reducing PKS groups nested with bacterial PKSs and PKS-nonribosomal peptide synthase (NRPS) respectively, and more than 10 small groups of reducing PKSs.
    In addition, polyphyly of PKS-NRPS hybrid genes raised questions regarding the recruitment of the elegant conjugation machinery. Overall, high rates of gene duplication and divergence for type I PKSs were frequent.
    In order to design a more efficient and easier genetically manipulated heterologous system for the expression of fungal PKS genes, we addressed the genetic robustness mechanism in yeast. Especially, we focused on the exploration on the role of transcriptional compensation in genetic robustness. A set of non-homologous synthetic-lethal gene pairs was assessed with various type data in yeast. We considered the functional buffering of non-homologous genes can be characterized by three features: (i) synthetic-lethal interaction, (ii) the ratio of shared common interacting partners, and (iii) the degree of co-regulation. The results also suggested that transcriptional reprogramming may plays a limited role in functional compensation among non-homologous genes.
    As stated above, our assessment aids in understanding the phylogenetic relationship of fungal PKSs and the mechanism of functional compensation in yeast. The PKS wiki-database will further integrate various types of polyketide information and facilitate the identification and the application of new bioactive products.

    中文摘要 i ABSTRACT iii ACKNOWLEDGEMENT v TABLE OF CONTENT vii LIST OF FIGURES x LIST OF TABLES xi LIST OF ABBREVIATIONS xii PUBLICATIONS xiv CHAPTER 1. Introduction 15 1.1 General Introduction 16 1.2 Natural Products as Drugs 17 1.3 A Historic Perspective on Polyketides Research 22 1.3.1 The early age of polyketide research 23 1.3.2 Isotopic-labelling applications on polyketide 23 1.3.3 The genetic approach on polyketide synthase studies 25 1.4 Genomics and Secondary Metabolism 28 1.4.1 Fungal genome mining for new natural products and biosynthetic pathways 28 1.4.2 Genomics-based methods for the discovery of new natural products 29 1.5 Objectives of the Thesis 31 CHAPTER 2. Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species 32 2.1 Introduction 33 2.1.1 The paradigms of polyketide synthase studies 33 2.1.2 Fungal type I polyketide synthases 36 2.1.3 Dual and hybrid synthases systems 41 2.1.4 Genome mining of polyketide synthases in Aspergillus species 43 2.1.5 Evolution of polyketide synthases 46 2.1.5.1 Phylogenomics analysis in secondary metabolites 46 2.1.5.2 Keto-synthase domain phylogeny 46 2.2 Materials and Methods 50 2.2.1 PKS genes and genome databases 50 2.2.2 Assignment of catalytic domains and PKS types 51 2.2.3 Domain genealogy construction 53 2.2.4 Database construction 53 2.3 Results and Discussion 54 2.3.1 Distribution of PKS-related genes 54 2.3.2 Domain compositions 56 2.3.3 Phylogenomic analysis of KS domains 58 2.3.5 Orthologous genes 63 2.3.6 Web-based database system 67 2.4 Conclusion 68 CHAPTER 3. Feature Identification of Compensatory Gene Pairs without Sequence Homology in Yeast 70 3.1 Introduction 71 3.1.1 Transcriptional regulation of secondary metabolism gene clusters 71 3.2.1.1 Pathway-specific regulators 72 3.2.1.2 Global regulatory proteins 73 3.1.2 Yeast as a robust heterologous host for secondary metabolite production 74 3.1.3 Genetic network robustness 76 3.2 Materials and Methods 79 3.2.1 Dataset of synthetic lethal genes and mRNA expression data 79 3.2.2 Calculation of sequence similarity and assignment of functional modules 79 3.2.3 Biological network construction 80 3.2.4 Promoter regulatory elements analyses 80 3.2.5 MES and PCoR analyses 81 3.2.6 Functional relatedness analyses 81 3.3 Results and Discussion 83 3.3.1 Sequence similarity and functional module analysis 83 3.3.2 Gene expression analyses 83 3.3.3 Network-based modeling 85 3.3.4 Motif-sharing analysis of non-homologous SSL pairs 87 3.3.5 Identification of functionally compensatory genes 89 3.4 Conclusions 91 CHAPTER 4. Conclusions and Future Perspectives 93 4.1 Polyketide Synthase Diversity and Evolution of Secondary Metabolite Gene Clusters in Fungi 94 4.2 Database of Polyketide and Polyketide Synthase 96 4.3 Evolution and Genetic Robustness 97 REFERENCES 100 Appendix A. Phylogenetic relationship of iPKS in Aspergillus species 124 Appendix B. A list of candidates of compensatory gene 132

    1. Fedorova, N.D., N. Khaldi, V.S. Joardar, R. Maiti, P. Amedeo, M.J. Anderson, J. Crabtree, J.C. Silva, J.H. Badger, A. Albarraq, S. Angiuoli, H. Bussey, P. Bowyer, P.J. Cotty, P.S. Dyer, A. Egan, K. Galens, C.M. Fraser-Liggett, B.J. Haas, J.M. Inman, R. Kent, S. Lemieux, I. Malavazi, J. Orvis, T. Roemer, C.M. Ronning, J.P. Sundaram, G. Sutton, G. Turner, J.C. Venter, O.R. White, B.R. Whitty, P. Youngman, K.H. Wolfe, G.H. Goldman, J.R. Wortman, B. Jiang, D.W. Denning, and W.C. Nierman, Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genetics, 2008. 4(4): p. e1000046.
    2. Machida, M. and K. Gomi, Aspergillus : molecular biology and genomics2010, Wymondham: Caister Academic. vii, 238 p.
    3. Nierman, W.C., A. Pain, M.J. Anderson, J.R. Wortman, H.S. Kim, J. Arroyo, M. Berriman, K. Abe, D.B. Archer, C. Bermejo, J. Bennett, P. Bowyer, D. Chen, M. Collins, R. Coulsen, R. Davies, P.S. Dyer, M. Farman, N. Fedorova, T.V. Feldblyum, R. Fischer, N. Fosker, A. Fraser, J.L. Garcia, M.J. Garcia, A. Goble, G.H. Goldman, K. Gomi, S. Griffith-Jones, R. Gwilliam, B. Haas, H. Haas, D. Harris, H. Horiuchi, J. Huang, S. Humphray, J. Jimenez, N. Keller, H. Khouri, K. Kitamoto, T. Kobayashi, S. Konzack, R. Kulkarni, T. Kumagai, A. Lafon, J.P. Latge, W. Li, A. Lord, C. Lu, W.H. Majoros, G.S. May, B.L. Miller, Y. Mohamoud, M. Molina, M. Monod, I. Mouyna, S. Mulligan, L. Murphy, S. O'Neil, I. Paulsen, M.A. Penalva, M. Pertea, C. Price, B.L. Pritchard, M.A. Quail, E. Rabbinowitsch, N. Rawlins, M.A. Rajandream, U. Reichard, H. Renauld, G.D. Robson, S. Rodriguez de Cordoba, J.M. Rodriguez-Pena, C.M. Ronning, S. Rutter, S.L. Salzberg, M. Sanchez, J.C. Sanchez-Ferrero, D. Saunders, K. Seeger, R. Squares, S. Squares, M. Takeuchi, F. Tekaia, G. Turner, C.R. Vazquez de Aldana, J. Weidman, O. White, J. Woodward, J.H. Yu, C. Fraser, J.E. Galagan, K. Asai, M. Machida, N. Hall, B. Barrell, and D.W. Denning, Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005. 438(7071): p. 1151-6.
    4. Pel, H.J., J.H. de Winde, D.B. Archer, P.S. Dyer, G. Hofmann, P.J. Schaap, G. Turner, R.P. de Vries, R. Albang, K. Albermann, M.R. Andersen, J.D. Bendtsen, J.A. Benen, M. van den Berg, S. Breestraat, M.X. Caddick, R. Contreras, M. Cornell, P.M. Coutinho, E.G. Danchin, A.J. Debets, P. Dekker, P.W. van Dijck, A. van Dijk, L. Dijkhuizen, A.J. Driessen, C. d'Enfert, S. Geysens, C. Goosen, G.S. Groot, P.W. de Groot, T. Guillemette, B. Henrissat, M. Herweijer, J.P. van den Hombergh, C.A. van den Hondel, R.T. van der Heijden, R.M. van der Kaaij, F.M. Klis, H.J. Kools, C.P. Kubicek, P.A. van Kuyk, J. Lauber, X. Lu, M.J. van der Maarel, R. Meulenberg, H. Menke, M.A. Mortimer, J. Nielsen, S.G. Oliver, M. Olsthoorn, K. Pal, N.N. van Peij, A.F. Ram, U. Rinas, J.A. Roubos, C.M. Sagt, M. Schmoll, J. Sun, D. Ussery, J. Varga, W. Vervecken, P.J. van de Vondervoort, H. Wedler, H.A. Wosten, A.P. Zeng, A.J. van Ooyen, J. Visser, and H. Stam, Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol, 2007. 25(2): p. 221-31.
    5. Payne, G.A., W.C. Nierman, J.R. Wortman, B.L. Pritchard, D. Brown, R.A. Dean, D. Bhatnagar, T.E. Cleveland, M. Machida, and J. Yu, Whole genome comparison of Aspergillus flavus and A. oryzae. Medical Mycology, 2006. 44(s1): p. 9-11.
    6. Jenke-Kodama, H., R. Muller, and E. Dittmann, Evolutionary mechanisms underlying secondary metabolite diversity. Prog Drug Res, 2008. 65: p. 119, 121-40.
    7. Galagan, J.E., S.E. Calvo, C. Cuomo, L.J. Ma, J.R. Wortman, S. Batzoglou, S.I. Lee, M. Basturkmen, C.C. Spevak, J. Clutterbuck, V. Kapitonov, J. Jurka, C. Scazzocchio, M. Farman, J. Butler, S. Purcell, S. Harris, G.H. Braus, O. Draht, S. Busch, C. D'Enfert, C. Bouchier, G.H. Goldman, D. Bell-Pedersen, S. Griffiths-Jones, J.H. Doonan, J. Yu, K. Vienken, A. Pain, M. Freitag, E.U. Selker, D.B. Archer, M.A. Penalva, B.R. Oakley, M. Momany, T. Tanaka, T. Kumagai, K. Asai, M. Machida, W.C. Nierman, D.W. Denning, M. Caddick, M. Hynes, M. Paoletti, R. Fischer, B. Miller, P. Dyer, M.S. Sachs, S.A. Osmani, and B.W. Birren, Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005. 438(7071): p. 1105-15.
    8. Newman, D.J. and G.M. Cragg, Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 2012. 75(3): p. 311-35.
    9. Andersen, M.R., M.P. Salazar, P.J. Schaap, P.J. van de Vondervoort, D. Culley, J. Thykaer, J.C. Frisvad, K.F. Nielsen, R. Albang, K. Albermann, R.M. Berka, G.H. Braus, S.A. Braus-Stromeyer, L.M. Corrochano, Z. Dai, P.W. van Dijck, G. Hofmann, L.L. Lasure, J.K. Magnuson, H. Menke, M. Meijer, S.L. Meijer, J.B. Nielsen, M.L. Nielsen, A.J. van Ooyen, H.J. Pel, L. Poulsen, R.A. Samson, H. Stam, A. Tsang, J.M. van den Brink, A. Atkins, A. Aerts, H. Shapiro, J. Pangilinan, A. Salamov, Y. Lou, E. Lindquist, S. Lucas, J. Grimwood, I.V. Grigoriev, C.P. Kubicek, D. Martinez, N.N. van Peij, J.A. Roubos, J. Nielsen, and S.E. Baker, Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res, 2011. 21(6): p. 885-97.
    10. Machida, M., K. Asai, M. Sano, T. Tanaka, T. Kumagai, G. Terai, K. Kusumoto, T. Arima, O. Akita, Y. Kashiwagi, K. Abe, K. Gomi, H. Horiuchi, K. Kitamoto, T. Kobayashi, M. Takeuchi, D.W. Denning, J.E. Galagan, W.C. Nierman, J. Yu, D.B. Archer, J.W. Bennett, D. Bhatnagar, T.E. Cleveland, N.D. Fedorova, O. Gotoh, H. Horikawa, A. Hosoyama, M. Ichinomiya, R. Igarashi, K. Iwashita, P.R. Juvvadi, M. Kato, Y. Kato, T. Kin, A. Kokubun, H. Maeda, N. Maeyama, J. Maruyama, H. Nagasaki, T. Nakajima, K. Oda, K. Okada, I. Paulsen, K. Sakamoto, T. Sawano, M. Takahashi, K. Takase, Y. Terabayashi, J.R. Wortman, O. Yamada, Y. Yamagata, H. Anazawa, Y. Hata, Y. Koide, T. Komori, Y. Koyama, T. Minetoki, S. Suharnan, A. Tanaka, K. Isono, S. Kuhara, N. Ogasawara, and H. Kikuchi, Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005. 438(7071): p. 1157-61.
    11. Rokas, A., G. Payne, N.D. Fedorova, S.E. Baker, M. Machida, J. Yu, D.R. Georgianna, R.A. Dean, D. Bhatnagar, T.E. Cleveland, J.R. Wortman, R. Maiti, V. Joardar, P. Amedeo, D.W. Denning, and W.C. Nierman, What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol, 2007. 59: p. 11-7.
    12. McAlpine, J., A. Romano, and D. Ecker, Natural products, both small and large, and a focus on cancer treatment. Current Opinion in Drug Discovery and Development, 2009. 12(2): p. 186-8.
    13. Cragg, G. and D. Newman, Nature: a vital source of leads for anticancer drug development. Phytochemistry Reviews, 2009. 8(2): p. 313-331.
    14. Paterson, R.R., The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycol Res, 2004. 108(Pt 12): p. 1431-7.
    15. Smith, R.S. and B.H. Iglewski, P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol, 2003. 6(1): p. 56-60.
    16. Crosa, J.H. and C.T. Walsh, Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev, 2002. 66(2): p. 223-49.
    17. Nodwell, J.R., M. Yang, D. Kuo, and R. Losick, Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics, 1999. 151(2): p. 569-84.
    18. Brakhage, A.A., M. Thon, P. Sprote, D.H. Scharf, Q. Al-Abdallah, S.M. Wolke, and P. Hortschansky, Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry, 2009. 70(15-16): p. 1801-11.
    19. Hertweck, C., The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl, 2009. 48(26): p. 4688-716.
    20. Khosla, C., Structures and mechanisms of polyketide synthases. The Journal of Organic Chemistry, 2009. 74(17): p. 6416-20.
    21. Koglin, A. and C.T. Walsh, Structural insights into nonribosomal peptide enzymatic assembly lines. Natural Product Reports, 2009. 26(8): p. 987-1000.
    22. Kopp, F. and M.A. Marahiel, Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Natural Product Reports, 2007. 24(4): p. 735-49.
    23. Schwecke, T., J.F. Aparicio, I. Molnar, A. Konig, L.E. Khaw, S.F. Haydock, M. Oliynyk, P. Caffrey, J. Cortes, J.B. Lester, and et al., The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A, 1995. 92(17): p. 7839-43.
    24. Chang, Z., N. Sitachitta, J.V. Rossi, M.A. Roberts, P.M. Flatt, J. Jia, D.H. Sherman, and W.H. Gerwick, Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod, 2004. 67(8): p. 1356-67.
    25. Petersen, F. and R. Amstutz, Natural compounds as drugs. Progress in drug research2008, Basel ; Boston: Birkhäuser.
    26. Newman, D.J. and G.M. Cragg, Natural Products as Sources of New Drugs over the Last 25 Years. Journal of Natural Products, 2007. 70(3): p. 461-477.
    27. Huang, K.C. and W.M. Williams, The pharmacology of Chinese herbs. 2nd ed1999, Boca Raton: CRC Press. xxi, 512 p.
    28. Bassett, E.J., M.S. Keith, G.J. Armelagos, D.L. Martin, and A.R. Villanueva, Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science, 1980. 209(4464): p. 1532-4.
    29. Pasteur, L. and J. Joubert, Charbon et septicémie1877, Paris: E. Martinet.
    30. Page, M.G.P., Beta-Lactam Antibiotics
    Antibiotic Discovery and Development, T.J. Dougherty and M.J. Pucci, Editors. 2012, Springer US. p. 79-117.
    31. Fleming, A., Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis, 1980. 2(1): p. 129-39.
    32. Comroe, J.H., Jr., Pay dirt: the story of streptomycin. Part I. From Waksman to Waksman. Am Rev Respir Dis, 1978. 117(4): p. 773-81.
    33. Ehrlich, J., Q.R. Bartz, R.M. Smith, D.A. Joslyn, and P.R. Burkholder, Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science, 1947. 106(2757): p. 417.
    34. Carter, H.E., D. Gottlieb, and H.W. Anderson, Chloromycetin and Streptothricin. Science, 1948. 107(2770): p. 113.
    35. Fischbach, M.A. and C.T. Walsh, Antibiotics for emerging pathogens. Science, 2009. 325(5944): p. 1089-93.
    36. Li, J.W. and J.C. Vederas, Drug discovery and natural products: end of an era or an endless frontier? Science, 2009. 325(5937): p. 161-5.
    37. Gunde-Cimerman, N. and A. Cimerman, Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase-lovastatin. Exp Mycol, 1995. 19(1): p. 1-6.
    38. Liu, J., J. Zhang, Y. Shi, S. Grimsgaard, T. Alraek, and V. Fonnebo, Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin Med, 2006. 1: p. 4.
    39. Tan, C., H. Tasaka, K.P. Yu, M.L. Murphy, and D.A. Karnofsky, Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer, 1967. 20(3): p. 333-53.
    40. Dimarco, A., M. Gaetani, L. Dorigotti, M. Soldati, and O. Bellini, Daunomycin: A New Antibiotic with Antitumor Activity. Cancer Chemother Rep, 1964. 38: p. 31-8.
    41. Fischbach, M.A. and C.T. Walsh, Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev, 2006. 106(8): p. 3468-96.
    42. Staunton, J. and K.J. Weissman, Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001. 18(4): p. 380-416.
    43. Shen, B., Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current opinion in chemical biology, 2003. 7(2): p. 285-95.
    44. Hopwood, D.A., Genetic Contributions to Understanding Polyketide Synthases. Chem Rev, 1997. 97(7): p. 2465-2498.
    45. Collie, J.N., CLXXI.-Derivatives of the multiple keten group. Journal of the Chemical Society, Transactions, 1907. 91: p. 1806-1813.
    46. Collie, J.N., Proceedings of the Chemical Society, Vol. 23, No. 330. Proceedings of the Chemical Society, London, 1907. 23(330): p. 203-238.
    47. Bentley, R. and J.W. Bennett, Constructing polyketides: from collie to combinatorial biosynthesis. Annual review of microbiology, 1999. 53: p. 411-46.
    48. Birch, A., R. Massy-Westropp, and C. Moye, Studies in relation to biosynthesis. VII. 2-Hydroxy-6-methylbenzoic acid in <I>Penicillium griseofulvum</I> Dierckx. Australian Journal of Chemistry, 1955. 8(4): p. 539-544.
    49. Birch, A.J., Biosynthesis of polyketides and related compounds. Science, 1967. 156(772): p. 202-6.
    50. Anslow, W.K. and H. Raistrick, Studies in the biochemistry of micro-organisms: 6-Hydroxy-2-methylbenzoic acid, a product of the metabolism of glucose by Penicillium griseo-fulvum Dierckx. Biochem J, 1931. 25(1): p. 39-44.
    51. Dimroth, P., H. Walter, and F. Lynen, [Biosynthesis of 6-methylsalicylic acid]. Eur J Biochem, 1970. 13(1): p. 98-110.
    52. Simpson, T., Application of Isotopic Methods to Secondary Metabolic Pathways
    Biosynthesis, F. Leeper and J. Vederas, Editors. 1998, Springer Berlin / Heidelberg. p. 1-48.
    53. Minto, R.E. and C.A. Townsend, Enzymology and Molecular Biology of Aflatoxin Biosynthesis. Chem Rev, 1997. 97(7): p. 2537-2556.
    54. Hill, R.A., R.H. Carter, and J. Staunton, Biosynthesis of fungal metabolites. Terrein, a metabolite of Aspergillus terreus Thom. Journal of the Chemical Society, Perkin Transactions 1, 1981: p. 2570-2576.
    55. Chater, K.F. and C.J. Bruton, Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J, 1985. 4(7): p. 1893-7.
    56. Martin, M.F. and P. Liras, Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annual review of microbiology, 1989. 43: p. 173-206.
    57. Malpartida, F. and D.A. Hopwood, Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature, 1984. 309(5967): p. 462-4.
    58. Cortes, J., S.F. Haydock, G.A. Roberts, D.J. Bevitt, and P.F. Leadlay, An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature, 1990. 348(6297): p. 176-8.
    59. Donadio, S., M.J. Staver, J.B. McAlpine, S.J. Swanson, and L. Katz, Modular organization of genes required for complex polyketide biosynthesis. Science, 1991. 252(5006): p. 675-9.
    60. Funa, N., Y. Ohnishi, I. Fujii, M. Shibuya, Y. Ebizuka, and S. Horinouchi, A new pathway for polyketide synthesis in microorganisms. Nature, 1999. 400(6747): p. 897-9.
    61. Cane, D.E., C.T. Walsh, and C. Khosla, Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 1998. 282(5386): p. 63-8.
    62. Sherman, D.H., The Lego-ization of polyketide biosynthesis. Nat Biotechnol, 2005. 23(9): p. 1083-4.
    63. Walsh, C.T. and M.A. Fischbach, Natural products version 2.0: connecting genes to molecules. J Am Chem Soc, 2010. 132(8): p. 2469-93.
    64. Brakhage, A.A., Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev, 1998. 62(3): p. 547-85.
    65. Keller, N.P. and T.M. Hohn, Metabolic Pathway Gene Clusters in Filamentous Fungi. Fungal Genet Biol, 1997. 21(1): p. 17-29.
    66. Bentley, S.D., K.F. Chater, A.M. Cerdeno-Tarraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, M.A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C.W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M.A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B.G. Barrell, J. Parkhill, and D.A. Hopwood, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002. 417(6885): p. 141-7.
    67. Hertweck, C., Hidden biosynthetic treasures brought to light. Nat Chem Biol, 2009. 5(7): p. 450-2.
    68. Khaldi, N., F.T. Seifuddin, G. Turner, D. Haft, W.C. Nierman, K.H. Wolfe, and N.D. Fedorova, SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol, 2010. 47(9): p. 736-41.
    69. Medema, M.H., K. Blin, P. Cimermancic, V. de Jager, P. Zakrzewski, M.A. Fischbach, T. Weber, E. Takano, and R. Breitling, antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res, 2011. 39(Web Server issue): p. W339-46.
    70. Sanchez, J.F., A.D. Somoza, N.P. Keller, and C.C. Wang, Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep, 2012. 29(3): p. 351-71.
    71. Winter, J.M. and Y. Tang, Synthetic biological approaches to natural product biosynthesis. Current opinion in biotechnology, 2012. 23(5): p. 736-43.
    72. Cavicchioli, R., Archaea : molecular and cellular biology2007, Washington, DC: ASM Press. xii, 523 p., 18 p. of plates.
    73. Vagstad, A.L., S.B. Bumpus, K. Belecki, N.L. Kelleher, and C.A. Townsend, Interrogation of global active site occupancy of a fungal iterative polyketide synthase reveals strategies for maintaining biosynthetic fidelity. J Am Chem Soc, 2012. 134(15): p. 6865-77.
    74. Chan, Y.A., A.M. Podevels, B.M. Kevany, and M.G. Thomas, Biosynthesis of polyketide synthase extender units. Nat Prod Rep, 2009. 26(1): p. 90-114.
    75. Li, Y., Image, II, W. Xu, I. Image, and Y. Tang, Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem, 2010. 285(30): p. 22764-73.
    76. Hertweck, C., A. Luzhetskyy, Y. Rebets, and A. Bechthold, Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep, 2007. 24(1): p. 162-90.
    77. Tropf, S., B. Karcher, G. Schroder, and J. Schroder, Reaction mechanisms of homodimeric plant polyketide synthase (stilbenes and chalcone synthase). A single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6'-deoxychalcones. J Biol Chem, 1995. 270(14): p. 7922-8.
    78. Bingle, L.E., T.J. Simpson, and C.M. Lazarus, Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol, 1999. 26(3): p. 209-23.
    79. Feng, G.H. and T.J. Leonard, Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol, 1995. 177(21): p. 6246-54.
    80. Proctor, R.H., A.E. Desjardins, R.D. Plattner, and T.M. Hohn, A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol, 1999. 27(1): p. 100-12.
    81. Cox, R.J., F. Glod, D. Hurley, C.M. Lazarus, T.P. Nicholson, B.A. Rudd, T.J. Simpson, B. Wilkinson, and Y. Zhang, Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chem Commun (Camb), 2004(20): p. 2260-1.
    82. Shimizu, T., H. Kinoshita, S. Ishihara, K. Sakai, S. Nagai, and T. Nihira, Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol, 2005. 71(7): p. 3453-7.
    83. Nicholson, T.P., B.A. Rudd, M. Dawson, C.M. Lazarus, T.J. Simpson, and R.J. Cox, Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol, 2001. 8(2): p. 157-78.
    84. Lee, T., S.H. Yun, K.T. Hodge, R.A. Humber, S.B. Krasnoff, G.B. Turgeon, O.C. Yoder, and D.M. Gibson, Polyketide synthase genes in insect- and nematode-associated fungi. Appl Microbiol Biotechnol, 2001. 56(1-2): p. 181-7.
    85. Amnuaykanjanasin, A., J. Punya, P. Paungmoung, A. Rungrod, A. Tachaleat, S. Pongpattanakitshote, S. Cheevadhanarak, and M. Tanticharoen, Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol Lett, 2005. 251(1): p. 125-36.
    86. Miller, K.I., C. Qing, D.M. Sze, and B.A. Neilan, Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS One, 2012. 7(5): p. e35953.
    87. Kroken, S., N.L. Glass, J.W. Taylor, O.C. Yoder, and B.G. Turgeon, Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A, 2003. 100(26): p. 15670-5.
    88. Crawford, J.M., T.P. Korman, J.W. Labonte, A.L. Vagstad, E.A. Hill, O. Kamari-Bidkorpeh, S.C. Tsai, and C.A. Townsend, Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature, 2009. 461(7267): p. 1139-43.
    89. Bailey, A.M., R.J. Cox, K. Harley, C.M. Lazarus, T.J. Simpson, and E. Skellam, Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum: first observation of a reductive release mechanism during polyketide biosynthesis. Chem Commun (Camb), 2007(39): p. 4053-5.
    90. Cox, R.J., Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Organic and Biomolecular Chemistry, 2007. 5(13): p. 2010-26.
    91. Crawford, J.M. and C.A. Townsend, New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol, 2010. 8(12): p. 879-889.
    92. Chooi, Y.H. and Y. Tang, Navigating the Fungal Polyketide Chemical Space: From Genes to Molecules. J Org Chem, 2012.
    93. Beck, J., S. Ripka, A. Siegner, E. Schiltz, and E. Schweizer, The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem, 1990. 192(2): p. 487-98.
    94. Fujii, I., Y. Ono, H. Tada, K. Gomi, Y. Ebizuka, and U. Sankawa, Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet, 1996. 253(1-2): p. 1-10.
    95. Sun, H., C.L. Ho, F. Ding, I. Soehano, X.W. Liu, and Z.X. Liang, Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase. J Am Chem Soc, 2012. 134(29): p. 11924-7.
    96. Moriguchi, T., Y. Kezuka, T. Nonaka, Y. Ebizuka, and I. Fujii, Hidden function of catalytic domain in 6-methylsalicylic acid synthase for product release. J Biol Chem, 2010. 285(20): p. 15637-43.
    97. Castoe, T.A., T. Stephens, B.P. Noonan, and C. Calestani, A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene, 2007. 392(1-2): p. 47-58.
    98. Schmitt, I. and H.T. Lumbsch, Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One, 2009. 4(2): p. e4437.
    99. Ma, S.M., J.W. Li, J.W. Choi, H. Zhou, K.K. Lee, V.A. Moorthie, X. Xie, J.T. Kealey, N.A. Da Silva, J.C. Vederas, and Y. Tang, Complete reconstitution of a highly reducing iterative polyketide synthase. Science, 2009. 326(5952): p. 589-92.
    100. Winssinger, N. and S. Barluenga, Chemistry and biology of resorcylic acid lactones. Chem Commun (Camb), 2007(1): p. 22-36.
    101. Chiang, Y.M., E. Szewczyk, A.D. Davidson, N. Keller, B.R. Oakley, and C.C. Wang, A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J Am Chem Soc, 2009. 131(8): p. 2965-70.
    102. Zhou, H., K. Qiao, Z. Gao, M.J. Meehan, J.W. Li, X. Zhao, P.C. Dorrestein, J.C. Vederas, and Y. Tang, Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis. J Am Chem Soc, 2010. 132(13): p. 4530-1.
    103. Kennedy, J., K. Auclair, S.G. Kendrew, C. Park, J.C. Vederas, and C.R. Hutchinson, Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science, 1999. 284(5418): p. 1368-72.
    104. Schwarzer, D., R. Finking, and M.A. Marahiel, Nonribosomal peptides: from genes to products. Nat Prod Rep, 2003. 20(3): p. 275-87.
    105. Tokuoka, M., Y. Seshime, I. Fujii, K. Kitamoto, T. Takahashi, and Y. Koyama, Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol, 2008. 45(12): p. 1608-15.
    106. Shen, B., L. Du, C. Sanchez, M. Chen, and D.J. Edwards, Bleomycin Biosynthesis inStreptomyces verticillusATCC15003: A Model of Hybrid Peptide and Polyketide Biosynthesis. Bioorganic Chemistry, 1999. 27(2): p. 155-171.
    107. Micheli, P.A., Nova plantarum genera juxta Tournefortii methodum disposita1729, Flor.
    108. Ainsworth, G.C., Introduction to the history of mycology1976, Cambridge: Cambridge University Press. xi, 359 p.
    109. Osmani, S.A. and G.H. Goldman, The Aspergilli : genomics, medical aspects, biotechnology, and research methods. Mycology2008, Boca Raton: Taylor & Francis. 551 p.
    110. Abdin, M.Z., M.M. Ahmad, and S. Javed, Advances in molecular detection of Aspergillus: an update. Arch Microbiol, 2010. 192(6): p. 409-25.
    111. Souvorov, A., B. Kiryutin, V. Chetvernin, B. Robbertse, L. Zaslavsky, and T. Tatusova., Alternative annotation of Aspergillus genomes with multi-genome Gnomon method., in The Eighth International Aspergillus Meeting (ASPERFEST 8)2011: Pacific Grove, California, U.S.A.
    112. Brakhage, A.A. and V. Schroeckh, Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet Biol, 2011. 48(1): p. 15-22.
    113. Collemare, J., A. Billard, H.U. Bohnert, and M.H. Lebrun, Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol Res, 2008. 112(Pt 2): p. 207-15.
    114. Bode, H.B., B. Bethe, R. Hofs, and A. Zeeck, Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem, 2002. 3(7): p. 619-27.
    115. Hoffmeister, D. and N.P. Keller, Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep, 2007. 24(2): p. 393-416.
    116. Nett, M., H. Ikeda, and B.S. Moore, Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep, 2009. 26(11): p. 1362-84.
    117. Li, M.H., P.M. Ung, J. Zajkowski, S. Garneau-Tsodikova, and D.H. Sherman, Automated genome mining for natural products. BMC Bioinformatics, 2009. 10: p. 185.
    118. Tae, H., J.K. Sohng, and K. Park, Development of an analysis program of type I polyketide synthase gene clusters using homology search and profile hidden Markov model. J Microbiol Biotechnol, 2009. 19(2): p. 140-6.
    119. Starcevic, A., J. Zucko, J. Simunkovic, P.F. Long, J. Cullum, and D. Hranueli, ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res, 2008. 36(21): p. 6882-92.
    120. Tae, H., E.B. Kong, and K. Park, ASMPKS: an analysis system for modular polyketide synthases. BMC Bioinformatics, 2007. 8: p. 327.
    121. Weber, T., C. Rausch, P. Lopez, I. Hoof, V. Gaykova, D.H. Huson, and W. Wohlleben, CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol, 2009. 140(1-2): p. 13-7.
    122. Yadav, G., R.S. Gokhale, and D. Mohanty, Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol, 2009. 5(4): p. e1000351.
    123. Fischbach, M.A., C.T. Walsh, and J. Clardy, The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4601-8.
    124. Ridley, C.P., H.Y. Lee, and C. Khosla, Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4595-600.
    125. Eisen, J.A., A phylogenomic study of the MutS family of proteins. Nucleic Acids Res, 1998. 26(18): p. 4291-300.
    126. Eisen, J.A. and C.M. Fraser, Phylogenomics: intersection of evolution and genomics. Science, 2003. 300(5626): p. 1706-7.
    127. Schmitt, I. and F.K. Barker, Phylogenetic methods in natural product research. Nat Prod Rep, 2009. 26(12): p. 1585-602.
    128. Ginolhac, A., C. Jarrin, P. Robe, G. Perriere, T.M. Vogel, P. Simonet, and R. Nalin, Type I polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol, 2005. 60(6): p. 716-25.
    129. Jenke-Kodama, H., A. Sandmann, R. Muller, and E. Dittmann, Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol, 2005. 22(10): p. 2027-39.
    130. Lin, S.H., M. Yoshimoto, P.C. Lyu, C.Y. Tang, and M. Arita, Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species. Evol Bioinform Online, 2012. 8: p. 373-387.
    131. Kim, T.K., A.K. Hewavitharana, P.N. Shaw, and J.A. Fuerst, Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol, 2006. 72(3): p. 2118-25.
    132. Freel, K.C., S.J. Nam, W. Fenical, and P.R. Jensen, Evolution of secondary metabolite genes in three closely related marine actinomycete species. Appl Environ Microbiol, 2011. 77(20): p. 7261-70.
    133. Nguyen, T., K. Ishida, H. Jenke-Kodama, E. Dittmann, C. Gurgui, T. Hochmuth, S. Taudien, M. Platzer, C. Hertweck, and J. Piel, Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol, 2008. 26(2): p. 225-33.
    134. Varga, J., K. Rigo, S. Kocsube, B. Farkas, and K. Pal, Diversity of polyketide synthase gene sequences in Aspergillus species. Res Microbiol, 2003. 154(8): p. 593-600.
    135. Schmitt, I., S. Kautz, and H.T. Lumbsch, 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res, 2008. 112(Pt 2): p. 289-96.
    136. O'Callaghan, J. and A. Dobson, Phylogenetic analysis of polyketide synthase genes from Aspergillus ochraceus. Mycotoxin Research, 2006. 22(2): p. 125-133.
    137. Ginolhac, A., C. Jarrin, B. Gillet, P. Robe, P. Pujic, K. Tuphile, H. Bertrand, T.M. Vogel, G. Perriere, P. Simonet, and R. Nalin, Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol, 2004. 70(9): p. 5522-7.
    138. Jenke-Kodama, H., T. Borner, and E. Dittmann, Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput Biol, 2006. 2(10): p. e132.
    139. Mabey Gilsenan, J., J. Cooley, and P. Bowyer, CADRE: the Central Aspergillus Data REpository 2012. Nucleic Acids Res, 2012. 40(Database issue): p. D660-6.
    140. Arnaud, M.B., M.C. Chibucos, M.C. Costanzo, J. Crabtree, D.O. Inglis, A. Lotia, J. Orvis, P. Shah, M.S. Skrzypek, G. Binkley, S.R. Miyasato, J.R. Wortman, and G. Sherlock, The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res, 2010. 38(Database issue): p. D420-7.
    141. Varga, J.n. and R.A. Samson, Aspergillus in the genomic era2008, Wageningen, Netherlands: Wageningen Academic Publishers. 334 p.
    142. Li, Y., W. Xu, and Y. Tang, Classification, prediction and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem, 2010.
    143. Ahuja, M., Y.M. Chiang, S.L. Chang, M.B. Praseuth, R. Entwistle, J.F. Sanchez, H.C. Lo, H.H. Yeh, B.R. Oakley, and C.C. Wang, Illuminating the Diversity of Aromatic Polyketide Synthases in Aspergillus nidulans. J Am Chem Soc, 2012.
    144. John, U., B. Beszteri, E. Derelle, Y. Van de Peer, B. Read, H. Moreau, and A. Cembella, Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist, 2008. 159(1): p. 21-30.
    145. Valarmathi, R., G.N. Hariharan, G. Venkataraman, and A. Parida, Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. Phytochemistry, 2009. 70(6): p. 721-9.
    146. Fisch, K.M., A.F. Gillaspy, M. Gipson, J.C. Henrikson, A.R. Hoover, L. Jackson, F.Z. Najar, H. Wagele, and R.H. Cichewicz, Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol, 2009. 36(9): p. 1199-213.
    147. Yadav, G., R.S. Gokhale, and D. Mohanty, Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol, 2003. 328(2): p. 335-63.
    148. Ansari, M.Z., G. Yadav, R.S. Gokhale, and D. Mohanty, NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res, 2004. 32(Web Server issue): p. W405-13.
    149. Tae, H., J.K. Sohng, and K. Park, MapsiDB: an integrated web database for type I polyketide synthases. Bioprocess and Biosystems Engineering, 2009. 32(6): p. 723-7.
    150. Marchler-Bauer, A., J.B. Anderson, C. DeWeese-Scott, N.D. Fedorova, L.Y. Geer, S. He, D.I. Hurwitz, J.D. Jackson, A.R. Jacobs, C.J. Lanczycki, C.A. Liebert, C. Liu, T. Madej, G.H. Marchler, R. Mazumder, A.N. Nikolskaya, A.R. Panchenko, B.S. Rao, B.A. Shoemaker, V. Simonyan, J.S. Song, P.A. Thiessen, S. Vasudevan, Y. Wang, R.A. Yamashita, J.J. Yin, and S.H. Bryant, CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res, 2003. 31(1): p. 383-7.
    151. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011. 28(10): p. 2731-9.
    152. Chevenet, F., C. Brun, A.L. Banuls, B. Jacq, and R. Christen, TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics, 2006. 7: p. 439.
    153. Huang, Y., B. Niu, Y. Gao, L. Fu, and W. Li, CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 2010. 26(5): p. 680-2.
    154. Nielsen, M.L., J.B. Nielsen, C. Rank, M.L. Klejnstrup, D.K. Holm, K.H. Brogaard, B.G. Hansen, J.C. Frisvad, T.O. Larsen, and U.H. Mortensen, A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett, 2011. 321(2): p. 157-66.
    155. Cuomo, C.A., U. Guldener, J.R. Xu, F. Trail, B.G. Turgeon, A. Di Pietro, J.D. Walton, L.J. Ma, S.E. Baker, M. Rep, G. Adam, J. Antoniw, T. Baldwin, S. Calvo, Y.L. Chang, D. Decaprio, L.R. Gale, S. Gnerre, R.S. Goswami, K. Hammond-Kosack, L.J. Harris, K. Hilburn, J.C. Kennell, S. Kroken, J.K. Magnuson, G. Mannhaupt, E. Mauceli, H.W. Mewes, R. Mitterbauer, G. Muehlbauer, M. Munsterkotter, D. Nelson, K. O'Donnell, T. Ouellet, W. Qi, H. Quesneville, M.I. Roncero, K.Y. Seong, I.V. Tetko, M. Urban, C. Waalwijk, T.J. Ward, J. Yao, B.W. Birren, and H.C. Kistler, The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 2007. 317(5843): p. 1400-2.
    156. Brown, D.W., R.A. Butchko, S.E. Baker, and R.H. Proctor, Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol, 2012. 116(2): p. 318-31.
    157. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura, Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol, 2003. 21(5): p. 526-31.
    158. Bushley, K.E. and B.G. Turgeon, Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol, 2010. 10: p. 26.
    159. Cramer, R.A., Jr., J.E. Stajich, Y. Yamanaka, F.S. Dietrich, W.J. Steinbach, and J.R. Perfect, Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene, 2006. 383: p. 24-32.
    160. Maiya, S., A. Grundmann, X. Li, S.M. Li, and G. Turner, Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem, 2007. 8(14): p. 1736-43.
    161. Lawrence, D.P., S. Kroken, B.M. Pryor, and A.E. Arnold, Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota. PLoS One, 2011. 6(11): p. e28231.
    162. Huffman, J., R. Gerber, and L. Du, Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers, 2010. 93(9): p. 764-76.
    163. Atoui, A., H.P. Dao, F. Mathieu, and A. Lebrihi, Amplification and diversity analysis of ketosynthase domains of putative polyketide synthase genes in Aspergillus ochraceus and Aspergillus carbonarius producers of ochratoxin A. Molecular Nutrition and Food Research, 2006. 50(6): p. 488-93.
    164. O'Callaghan, J., P.C. Stapleton, and A.D. Dobson, Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet Biol, 2006. 43(4): p. 213-21.
    165. Lee, C.-Z., G.-Y. Liou, and G.-F. Yuan, Comparison of Aspergillus flavus and Aspergillus oryzae by amplified fragment length polymorphism. Botanical Bulletin of Academia Sinica, 2004. 45(1): p. 8.
    166. Ferracin, L.M., C.B. Fier, M.L. Vieira, C.B. Monteiro-Vitorello, M. Varani Ade, M.M. Rossi, M. Muller-Santos, M.H. Taniwaki, B. Thie Iamanaka, and M.H. Fungaro, Strain-specific polyketide synthase genes of Aspergillus niger. Int J Food Microbiol, 2012. 155(3): p. 137-45.
    167. Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D.H. Huson, Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res, 2005. 33(18): p. 5799-808.
    168. Bachmann, B.O. and J. Ravel, Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol, 2009. 458: p. 181-217.
    169. Jenke-Kodama, H. and E. Dittmann, Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Nat Prod Rep, 2009. 26(7): p. 874-83.
    170. Brakhage, A.A., Regulation of fungal secondary metabolism. Nat Rev Microbiol, 2012.
    171. Bergmann, S., J. Schumann, K. Scherlach, C. Lange, A.A. Brakhage, and C. Hertweck, Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol, 2007. 3(4): p. 213-7.
    172. Chiang, Y.M., E. Szewczyk, A.D. Davidson, R. Entwistle, N.P. Keller, C.C. Wang, and B.R. Oakley, Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol, 2010. 76(7): p. 2067-74.
    173. Fernandes, M., N.P. Keller, and T.H. Adams, Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol, 1998. 28(6): p. 1355-65.
    174. Cary, J.W., B.G. Montalbano, and K.C. Ehrlich, Promoter elements involved in the expression of the Aspergillus parasiticus aflatoxin biosynthesis pathway gene avnA. Biochim Biophys Acta, 2000. 1491(1-3): p. 7-12.
    175. Chang, P.K., K.C. Ehrlich, J. Yu, D. Bhatnagar, and T.E. Cleveland, Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol, 1995. 61(6): p. 2372-7.
    176. Yu, J., P.K. Chang, K.C. Ehrlich, J.W. Cary, D. Bhatnagar, T.E. Cleveland, G.A. Payne, J.E. Linz, C.P. Woloshuk, and J.W. Bennett, Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol, 2004. 70(3): p. 1253-62.
    177. Brown, D.W., J.H. Yu, H.S. Kelkar, M. Fernandes, T.C. Nesbitt, N.P. Keller, T.H. Adams, and T.J. Leonard, Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A, 1996. 93(4): p. 1418-22.
    178. Abe, Y., C. Ono, M. Hosobuchi, and H. Yoshikawa, Functional analysis of mlcR, a regulatory gene for ML-236B (compactin) biosynthesis in Penicillium citrinum. Mol Genet Genomics, 2002. 268(3): p. 352-61.
    179. Bok, J.W., D. Chung, S.A. Balajee, K.A. Marr, D. Andes, K.F. Nielsen, J.C. Frisvad, K.A. Kirby, and N.P. Keller, GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun, 2006. 74(12): p. 6761-8.
    180. Bok, J.W. and N.P. Keller, LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic Cell, 2004. 3(2): p. 527-35.
    181. Tilburn, J., S. Sarkar, D.A. Widdick, E.A. Espeso, M. Orejas, J. Mungroo, M.A. Penalva, and H.N. Arst, Jr., The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J, 1995. 14(4): p. 779-90.
    182. Hortschansky, P., M. Eisendle, Q. Al-Abdallah, A.D. Schmidt, S. Bergmann, M. Thon, O. Kniemeyer, B. Abt, B. Seeber, E.R. Werner, M. Kato, A.A. Brakhage, and H. Haas, Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. EMBO J, 2007. 26(13): p. 3157-68.
    183. Thon, M., Q. Al Abdallah, P. Hortschansky, D.H. Scharf, M. Eisendle, H. Haas, and A.A. Brakhage, The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res, 2010. 38(4): p. 1098-113.
    184. Tudzynski, B., V. Homann, B. Feng, and G.A. Marzluf, Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet, 1999. 261(1): p. 106-14.
    185. Janus, D., P. Hortschansky, and U. Kuck, Identification of a minimal cre1 promoter sequence promoting glucose-dependent gene expression in the beta-lactam producer Acremonium chrysogenum. Curr Genet, 2008. 53(1): p. 35-48.
    186. Jekosch, K. and U. Kuck, Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol, 2000. 54(4): p. 556-63.
    187. Bayram, O., S. Krappmann, M. Ni, J.W. Bok, K. Helmstaedt, O. Valerius, S. Braus-Stromeyer, N.J. Kwon, N.P. Keller, J.H. Yu, and G.H. Braus, VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 2008. 320(5882): p. 1504-6.
    188. Bayram, O. and G.H. Braus, Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev, 2012. 36(1): p. 1-24.
    189. Gacek, A. and J. Strauss, The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol, 2012. 95(6): p. 1389-404.
    190. Ridley, C.P. and C. Khosla, Polyketides, in Encyclopedia of Microbiology (Third Edition), S. Editor-in-Chief: Moselio, Editor 2009, Academic Press: Oxford. p. 472-481.
    191. Pickens, L.B., Y. Tang, and Y.H. Chooi, Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng, 2011. 2: p. 211-36.
    192. Kealey, J.T., L. Liu, D.V. Santi, M.C. Betlach, and P.J. Barr, Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A, 1998. 95(2): p. 505-9.
    193. Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S.G. Oliver, Life with 6000 genes. Science, 1996. 274(5287): p. 546, 563-7.
    194. Cherry, J.M., C. Ball, S. Weng, G. Juvik, R. Schmidt, C. Adler, B. Dunn, S. Dwight, L. Riles, R.K. Mortimer, and D. Botstein, Genetic and physical maps of Saccharomyces cerevisiae. Nature, 1997. 387(6632 Suppl): p. 67-73.
    195. Chien, C.T., P.L. Bartel, R. Sternglanz, and S. Fields, The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A, 1991. 88(21): p. 9578-82.
    196. Wodicka, L., H. Dong, M. Mittmann, M.H. Ho, and D.J. Lockhart, Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol, 1997. 15(13): p. 1359-67.
    197. Winzeler, E.A., D.D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R. Bangham, R. Benito, J.D. Boeke, H. Bussey, A.M. Chu, C. Connelly, K. Davis, F. Dietrich, S.W. Dow, M. El Bakkoury, F. Foury, S.H. Friend, E. Gentalen, G. Giaever, J.H. Hegemann, T. Jones, M. Laub, H. Liao, N. Liebundguth, D.J. Lockhart, A. Lucau-Danila, M. Lussier, N. M'Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung, J.L. Revuelta, L. Riles, C.J. Roberts, P. Ross-MacDonald, B. Scherens, M. Snyder, S. Sookhai-Mahadeo, R.K. Storms, S. Veronneau, M. Voet, G. Volckaert, T.R. Ward, R. Wysocki, G.S. Yen, K. Yu, K. Zimmermann, P. Philippsen, M. Johnston, and R.W. Davis, Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 1999. 285(5429): p. 901-6.
    198. Osterlund, T., I. Nookaew, and J. Nielsen, Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv, 2012. 30(5): p. 979-88.
    199. Wattanachaisaereekul, S., A.E. Lantz, M.L. Nielsen, O.S. Andresson, and J. Nielsen, Optimization of heterologous production of the polyketide 6-MSA in Saccharomyces cerevisiae. Biotechnol Bioeng, 2007. 97(4): p. 893-900.
    200. Siddiqui, M.S., K. Thodey, I. Trenchard, and C.D. Smolke, Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Research, 2012. 12(2): p. 144-70.
    201. Kitano, H., Biological robustness. Nat Rev Genet, 2004. 5(11): p. 826-37.
    202. Edelman, G.M. and J.A. Gally, Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13763-8.
    203. Wagner, A., Distributed robustness versus redundancy as causes of mutational robustness. Bioessays, 2005. 27(2): p. 176-88.
    204. Gu, Z., L.M. Steinmetz, X. Gu, C. Scharfe, R.W. Davis, and W.H. Li, Role of duplicate genes in genetic robustness against null mutations. Nature, 2003. 421(6918): p. 63-6.
    205. Dean, E.J., J.C. Davis, R.W. Davis, and D.A. Petrov, Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genetics, 2008. 4(7): p. e1000113.
    206. Kafri, R., A. Bar-Even, and Y. Pilpel, Transcription control reprogramming in genetic backup circuits. Nat Genet, 2005. 37(3): p. 295-9.
    207. Kirschner, M. and J. Gerhart, Evolvability. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8420-7.
    208. Wagner, A., Robustness against mutations in genetic networks of yeast. Nat Genet, 2000. 24(4): p. 355-61.
    209. Nowak, M.A., M.C. Boerlijst, J. Cooke, and J.M. Smith, Evolution of genetic redundancy. Nature, 1997. 388(6638): p. 167-71.
    210. Lynch, M. and J.S. Conery, The evolutionary fate and consequences of duplicate genes. Science, 2000. 290(5494): p. 1151-5.
    211. Hughes, A.L., The evolution of functionally novel proteins after gene duplication. Proc Biol Sci, 1994. 256(1346): p. 119-24.
    212. Weiss, K., D. Stock, Z. Zhao, A. Buchanan, F. Ruddle, and C. Shashikant, Perspectives on genetic aspects of dental patterning. Eur J Oral Sci, 1998. 106 Suppl 1: p. 55-63.
    213. Schwarz, M., G. Alvarez-Bolado, P. Urbanek, M. Busslinger, and P. Gruss, Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14518-23.
    214. Mansouri, A. and P. Gruss, Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech Dev, 1998. 78(1-2): p. 171-8.
    215. Ma, X., A.M. Tarone, and W. Li, Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One, 2008. 3(4): p. e1922.
    216. Whitacre, J.M., Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theoretical Biology and Medical Modelling, 2010. 7: p. 6.
    217. Kitami, T. and J.H. Nadeau, Biochemical networking contributes more to genetic buffering in human and mouse metabolic pathways than does gene duplication. Nat Genet, 2002. 32(1): p. 191-4.
    218. Carter, G.W., S. Prinz, C. Neou, J.P. Shelby, B. Marzolf, V. Thorsson, and T. Galitski, Prediction of phenotype and gene expression for combinations of mutations. Mol Syst Biol, 2007. 3: p. 96.
    219. Gertz, J., J.P. Gerke, and B.A. Cohen, Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions. Theoretical Population Biology, 2010. 77(1): p. 1-5.
    220. van Wageningen, S., P. Kemmeren, P. Lijnzaad, T. Margaritis, J.J. Benschop, I.J. de Castro, D. van Leenen, M.J. Groot Koerkamp, C.W. Ko, A.J. Miles, N. Brabers, M.O. Brok, T.L. Lenstra, D. Fiedler, L. Fokkens, R. Aldecoa, E. Apweiler, V. Taliadouros, K. Sameith, L.A. van de Pasch, S.R. van Hooff, L.V. Bakker, N.J. Krogan, B. Snel, and F.C. Holstege, Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell, 2010. 143(6): p. 991-1004.
    221. Whitacre, J. and A. Bender, Degeneracy: a design principle for achieving robustness and evolvability. J Theor Biol, 2010. 263(1): p. 143-53.
    222. Giaever, G., A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. Andre, A.P. Arkin, A. Astromoff, M. El-Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschbauer, K.D. Entian, P. Flaherty, F. Foury, D.J. Garfinkel, M. Gerstein, D. Gotte, U. Guldener, J.H. Hegemann, S. Hempel, Z. Herman, D.F. Jaramillo, D.E. Kelly, S.L. Kelly, P. Kotter, D. LaBonte, D.C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C. Luo, M. Lussier, R. Mao, P. Menard, S.L. Ooi, J.L. Revuelta, C.J. Roberts, M. Rose, P. Ross-Macdonald, B. Scherens, G. Schimmack, B. Shafer, D.D. Shoemaker, S. Sookhai-Mahadeo, R.K. Storms, J.N. Strathern, G. Valle, M. Voet, G. Volckaert, C.Y. Wang, T.R. Ward, J. Wilhelmy, E.A. Winzeler, Y. Yang, G. Yen, E. Youngman, K. Yu, H. Bussey, J.D. Boeke, M. Snyder, P. Philippsen, R.W. Davis, and M. Johnston, Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002. 418(6896): p. 387-91.
    223. Kamath, R.S., A.G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, D.P. Welchman, P. Zipperlen, and J. Ahringer, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231-7.
    224. Kobayashi, K., S.D. Ehrlich, A. Albertini, G. Amati, K.K. Andersen, M. Arnaud, K. Asai, S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S.C. Brignell, S. Bron, K. Bunai, J. Chapuis, L.C. Christiansen, A. Danchin, M. Debarbouille, E. Dervyn, E. Deuerling, K. Devine, S.K. Devine, O. Dreesen, J. Errington, S. Fillinger, S.J. Foster, Y. Fujita, A. Galizzi, R. Gardan, C. Eschevins, T. Fukushima, K. Haga, C.R. Harwood, M. Hecker, D. Hosoya, M.F. Hullo, H. Kakeshita, D. Karamata, Y. Kasahara, F. Kawamura, K. Koga, P. Koski, R. Kuwana, D. Imamura, M. Ishimaru, S. Ishikawa, I. Ishio, D. Le Coq, A. Masson, C. Mauel, R. Meima, R.P. Mellado, A. Moir, S. Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard, M. Ogura, T. Ohanan, M. O'Reilly, M. O'Rourke, Z. Pragai, H.M. Pooley, G. Rapoport, J.P. Rawlins, L.A. Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H.H. Saxild, E. Scanlan, W. Schumann, J.F. Seegers, J. Sekiguchi, A. Sekowska, S.J. Seror, M. Simon, P. Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H.B. Thomaides, V. Vagner, J.M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y. Yamamoto, K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, and N. Ogasawara, Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A, 2003. 100(8): p. 4678-83.
    225. Papp, B., C. Pal, and L.D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature, 2004. 429(6992): p. 661-4.
    226. Korona, R., Gene dispensability. Current opinion in biotechnology, 2011. 22(4): p. 547-51.
    227. DeLuna, A., K. Vetsigian, N. Shoresh, M. Hegreness, M. Colon-Gonzalez, S. Chao, and R. Kishony, Exposing the fitness contribution of duplicated genes. Nat Genet, 2008. 40(5): p. 676-81.
    228. Ihmels, J., S.R. Collins, M. Schuldiner, N.J. Krogan, and J.S. Weissman, Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol Syst Biol, 2007. 3: p. 86.
    229. He, X. and J. Zhang, Higher duplicability of less important genes in yeast genomes. Molecular biology and evolution, 2006. 23(1): p. 144-51.
    230. Lesage, G., A.M. Sdicu, P. Menard, J. Shapiro, S. Hussein, and H. Bussey, Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics, 2004. 167(1): p. 35-49.
    231. Wong, S.L. and F.P. Roth, Transcriptional compensation for gene loss plays a minor role in maintaining genetic robustness in Saccharomyces cerevisiae. Genetics, 2005. 171(2): p. 829-33.
    232. Stark, C., B.J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher, R. Oughtred, M.S. Livstone, J. Nixon, K. Van Auken, X. Wang, X. Shi, T. Reguly, J.M. Rust, A. Winter, K. Dolinski, and M. Tyers, The BioGRID Interaction Database: 2011 update. Nucleic Acids Res, 2011. 39(Database issue): p. D698-704.
    233. Pan, X., P. Ye, D.S. Yuan, X. Wang, J.S. Bader, and J.D. Boeke, A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell, 2006. 124(5): p. 1069-81.
    234. Tong, A.H., M. Evangelista, A.B. Parsons, H. Xu, G.D. Bader, N. Page, M. Robinson, S. Raghibizadeh, C.W. Hogue, H. Bussey, B. Andrews, M. Tyers, and C. Boone, Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 2001. 294(5550): p. 2364-8.
    235. Tong, A.H., G. Lesage, G.D. Bader, H. Ding, H. Xu, X. Xin, J. Young, G.F. Berriz, R.L. Brost, M. Chang, Y. Chen, X. Cheng, G. Chua, H. Friesen, D.S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L. Ke, N. Krogan, Z. Li, J.N. Levinson, H. Lu, P. Menard, C. Munyana, A.B. Parsons, O. Ryan, R. Tonikian, T. Roberts, A.M. Sdicu, J. Shapiro, B. Sheikh, B. Suter, S.L. Wong, L.V. Zhang, H. Zhu, C.G. Burd, S. Munro, C. Sander, J. Rine, J. Greenblatt, M. Peter, A. Bretscher, G. Bell, F.P. Roth, G.W. Brown, B. Andrews, H. Bussey, and C. Boone, Global mapping of the yeast genetic interaction network. Science, 2004. 303(5659): p. 808-13.
    236. Collins, S.R., K.M. Miller, N.L. Maas, A. Roguev, J. Fillingham, C.S. Chu, M. Schuldiner, M. Gebbia, J. Recht, M. Shales, H. Ding, H. Xu, J. Han, K. Ingvarsdottir, B. Cheng, B. Andrews, C. Boone, S.L. Berger, P. Hieter, Z. Zhang, G.W. Brown, C.J. Ingles, A. Emili, C.D. Allis, D.P. Toczyski, J.S. Weissman, J.F. Greenblatt, and N.J. Krogan, Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007. 446(7137): p. 806-10.
    237. Schuldiner, M., S.R. Collins, N.J. Thompson, V. Denic, A. Bhamidipati, T. Punna, J. Ihmels, B. Andrews, C. Boone, J.F. Greenblatt, J.S. Weissman, and N.J. Krogan, Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell, 2005. 123(3): p. 507-19.
    238. Aach, J., W. Rindone, and G.M. Church, Systematic management and analysis of yeast gene expression data. Genome Res, 2000. 10(4): p. 431-45.
    239. Hughes, T.R., M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A. Bennett, E. Coffey, H. Dai, Y.D. He, M.J. Kidd, A.M. King, M.R. Meyer, D. Slade, P.Y. Lum, S.B. Stepaniants, D.D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S.H. Friend, Functional discovery via a compendium of expression profiles. Cell, 2000. 102(1): p. 109-26.
    240. Petti, A.A. and G.M. Church, A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res, 2005. 15(9): p. 1298-306.
    241. Mewes, H.W., D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Munsterkotter, S. Rudd, and B. Weil, MIPS: a database for genomes and protein sequences. Nucleic Acids Res, 2002. 30(1): p. 31-4.
    242. Matys, V., E. Fricke, R. Geffers, E. Gossling, M. Haubrock, R. Hehl, K. Hornischer, D. Karas, A.E. Kel, O.V. Kel-Margoulis, D.U. Kloos, S. Land, B. Lewicki-Potapov, H. Michael, R. Munch, I. Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, and E. Wingender, TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003. 31(1): p. 374-8.
    243. Kafri, R., M. Levy, and Y. Pilpel, The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci U S A, 2006. 103(31): p. 11653-8.
    244. Stein, A. and P. Aloy, A molecular interpretation of genetic interactions in yeast. FEBS Lett, 2008. 582(8): p. 1245-50.
    245. Li, J., Z. Yuan, and Z. Zhang, The cellular robustness by genetic redundancy in budding yeast. PLoS Genetics, 2010. 6(11): p. e1001187.
    246. DeLuna, A., M. Springer, M.W. Kirschner, and R. Kishony, Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol, 2010. 8(3): p. e1000347.
    247. Lehner, B., Molecular mechanisms of epistasis within and between genes. Trends Genet, 2011. 27(8): p. 323-31.
    248. Doyon, J.B. and D.R. Liu, Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination. Nucleic Acids Res, 2007. 35(17): p. 5851-60.
    249. Kabani, M., J.M. Beckerich, and C. Gaillardin, Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol, 2000. 20(18): p. 6923-34.
    250. Tyson, J.R. and C.J. Stirling, LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J, 2000. 19(23): p. 6440-52.
    251. Steel, G.J., D.M. Fullerton, J.R. Tyson, and C.J. Stirling, Coordinated activation of Hsp70 chaperones. Science, 2004. 303(5654): p. 98-101.
    252. Baxter, B.K., P. James, T. Evans, and E.A. Craig, SSI1 encodes a novel Hsp70 of the Saccharomyces cerevisiae endoplasmic reticulum. Mol Cell Biol, 1996. 16(11): p. 6444-56.
    253. Craven, R.A., M. Egerton, and C.J. Stirling, A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J, 1996. 15(11): p. 2640-50.
    254. Sun, X., D. Thrower, J. Qiu, P. Wu, L. Zheng, M. Zhou, J. Bachant, D.M. Wilson, 3rd, and B. Shen, Complementary functions of the Saccharomyces cerevisiae Rad2 family nucleases in Okazaki fragment maturation, mutation avoidance, and chromosome stability. DNA Repair (Amst), 2003. 2(8): p. 925-40.
    255. Osmond, B.C., C.A. Specht, and P.W. Robbins, Chitin synthase III: synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11206-10.
    256. Rosenfeld, S., Biomolecular self-defense and futility of high-specificity therapeutic targeting. Gene Regul Syst Bio, 2011. 5: p. 89-104.
    257. Shieh, G.S., C.M. Chen, C.Y. Yu, J. Huang, W.F. Wang, and Y.C. Lo, Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling. BMC Bioinformatics, 2008. 9: p. 134.
    258. Kaelin, W.G., Jr., The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer, 2005. 5(9): p. 689-98.
    259. Hajeri, V.A. and J.F. Amatruda, Studying synthetic lethal interactions in the zebrafish system: insight into disease genes and mechanisms. Disease Models and Mechanisms, 2012. 5(1): p. 33-7.
    260. Walton, J.D., Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol, 2000. 30(3): p. 167-71.
    261. Buades, C. and A. Moya, Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J Mol Evol, 1996. 42(5): p. 537-42.
    262. Penalva, M.A., A. Moya, J. Dopazo, and D. Ramon, Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proc Biol Sci, 1990. 241(1302): p. 164-9.
    263. Tsuge, T., Y. Harimoto, K. Akimitsu, K. Ohtani, M. Kodama, Y. Akagi, M. Egusa, M. Yamamoto, and H. Otani, Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev, 2013. 37(1): p. 44-66.
    264. Hunter, P., Robust yet flexible. In biological systems, resistance to change and innovation in the light of it go hand in hand. EMBO Reports, 2009. 10(9): p. 949-52.
    265. Wagner, A., Robustness and evolvability in living systems2007, Princeton, N.J. ; Woodstock: Princeton University Press. xii, 366 p.
    266. Wang, Z. and J. Zhang, Abundant indispensable redundancies in cellular metabolic networks. Genome Biology and Evolution, 2009. 1: p. 23-33.
    267. Masel, J. and M.V. Trotter, Robustness and evolvability. Trends Genet, 2010. 26(9): p. 406-14.
    268. Breitkreutz, B.J., C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone, R. Oughtred, D.H. Lackner, J. Bahler, V. Wood, K. Dolinski, and M. Tyers, The BioGRID Interaction Database: 2008 update. Nucleic Acids Res, 2008. 36(Database issue): p. D637-40.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE