簡易檢索 / 詳目顯示

研究生: 鄒建澔
Tsou, Chien-Hao
論文名稱: 以軌道指派為基礎的初步細部繞線
Track-Assignment-Based Initial Detailed Routing
指導教授: 王廷基
Wang, Ting-Chi
口試委員: 陳宏明
Chen, Hung-Ming
麥偉基
Mak, Wai-Kei
學位類別: 碩士
Master
系所名稱:
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 24
中文關鍵詞: 繞線細部繞線軌道指派電子設計自動化實體設計自動化
外文關鍵詞: ISPD 2018 contest, Detail Routing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 繞線是IC設計流程中非常重要的過程。隨著超大型積體電路設計中的特徵尺寸不斷縮小,在繞線階段需要考慮越來越複雜的設計規則。通常,由於問題的複雜性,繞線問題可分為兩個階段:全域繞線和細部繞線。現今繞線流程在細部繞線階段初期中使用軌道分配方法減少問題複雜度。
    受ISPD 2018競賽初始細部繞線的啟發,我們提出了一種基於軌道指派的初始細部繞線方法,該方法通過使用Steiner樹演算法完全連接每條繞線連線。我們通過商業工具評估我們的繞線結果,以證明我們的繞線方法的有效性。


    Routing is a very important procedure in the IC design flow. As feature size in VLSI design continues to shrink, more and more complex design rules need to be considered during the routing phase. Typically, the routing problem can be divided into two stages due to the problem complexity: global routing, and detailed routing. A modern routing flow inserts one more method, track assignment, in the beginning of the detailed routing stage.
    Inspired by the ISPD 2018 Contest Initial Detailed Routing, we propose an initial detailed routing approach based on track assignment, which also fully connects each net by using a Steiner tree algorithm. We evaluate our routing by a commercial tool to demonstrate the effectiveness of our routing approach.

    Contents 1 Introduction 1 2 Preliminaries and Problem Formulation 4 2.1 DRC Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Min Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 Parallel-Run Spacing . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.5 End-of-Line Spacing . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.6 Cut Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Routing Preference Metrics . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Routing Guide Honoring . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Wrong-Way Routing . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 O -Track Routing . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Our Initial Detailed Routing Approach 9 3.1 Track-Assignment-Based Congestion Analysis . . . . . . . . . . . . . 10 3.1.1 Segment Extraction . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Initial Track-Assignment . . . . . . . . . . . . . . . . . . . . . 11 3.1.3 Reduction of Segment Overlaps . . . . . . . . . . . . . . . . . 11 3.2 Routing Pattern Connection . . . . . . . . . . . . . . . . . . . . . . . 12 4 Experimental Results 18 5 Conclusion 22

    [1] D. Abercrombie, \Restrictive design rules and their impact on 22 nm design and physical veri cation," in Proceedings of European Data Protection Supervisor, 2009.
    [2] C. J. Alpert, Z. Li, M. D. Mott, G.-J. Nam, J. A. Roy, and G. Tellez, \What makes a design dicult to route," in Proceedings of International Symposium on Physical Design, pp. 7{12, 2010.
    [3] M. Burstein and R. Pelavin, \Hierarchical wire routing," in IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol. 2, pp. 223{234, 1983.
    [4] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, \Track assignment: a desirable inter- mediate step between global routing and detailed routing," in International Conference on Computer Aided Design, pp. 59{66, 2002.
    [5] C. Y. Lee, \An algorithm for path connection and its application," in IRE Transactions on Electronic Computer, vol. 10, pp. 346{365, 1961.
    [6] P. E. Hart, N. J. Nilsson, and B. Raphael, \A formal basis for the heuristic determination of minimum cost paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4, pp. 100{107, 1968.
    [7] K. Mikami and K. Tabuchi, \A computer program for optimal routing of printed circuit connectors," in International Federation for Information Processing, pp. 1475{1478, 1968.
    [8] D. Hightower, \A solution to line routing problems on the continuous plane," in Proceedings of Design Automation Conference, pp. 11{34, 1988.
    [9] Y. Zhang and C. Chu, \Regularroute: An ecient detailed router applying regular routing patterns," in IEEE Transactions on Very Large Scale Integration Systems, vol. 21, pp. 1655{ 1668, 2012.
    [10] M. G. et al, \Bonnroute: Algorithms and data structures for fast and good vlsi routing," in ACM Transactions Des. Autom. Electron. Syst., vol. 18, pp. 32:1{32:24, 2013.
    [11] ISPD 2018 Contest on Initial Detailed Routing. http://www.ispd.cc/contests/18/index.htm.
    [12] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, \Ispd 2018 initial detailed routing contest and benchmarks," in Proceedings of ISPD, pp. 140{143, 2018.
    [13] LEF/DEF Language Reference. http://www.ispd.cc/contests/18/lefdefref.pdf.
    [14] M.-P. Wong, W.-H. Liu, and T.-C. Wang, \Negotiation-based track assignment considering local nets," in Proceedings of Asia and South Paci c Design Automation Conference, pp. 378{ 383, 2016.
    [15] C.-C. Chung, Ripup-and-Reroute-Based Re nement for Initial Detailed Routing. Master The- sis, National Tsing Hua University, 2018.
    [16] Evaluation Metrics and Ranking Method. http://www.ispd.cc/contests/18.
    [17] K. Mehlhorn, \A faster approximation algorithm for the steiner problem in graphs," in Infor- mation Processing Letters, vol. 27, pp. 125{128, 1988.
    [18] Cadence Innovus. http://www.cadence.com. 24

    QR CODE