簡易檢索 / 詳目顯示

研究生: 楊博翔
Yang, Po Hsiang
論文名稱: 碳化矽功率二極體研發與製作
Development of 4H-SiC JBS power device
指導教授: 黃智方
Huang, Chih Fang
口試委員: 巫勇賢
Wu, Yung Hsien
鄭博泰
Cheng, Po Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 碳化矽功率元件蕭基能障
外文關鍵詞: 4H-SiC, Power device, Schottky barrier height
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,目的是為探討1200V ,2 Amp 接面位障蕭基二極體 (Junction Barrier Schottky, JBS) 元件設計與製程。光罩設計與模擬方面,針對不同的P型離子佈植間距2-4 μm作調變,利於找出元件順向電壓降與反向漏電流此兩平衡(Trade-off)之關係。
    我們嘗試找出不同蕭基金屬經適當熱處理後對於蕭基能障變化,根據最後結果套用於JBS元件上;倘若元件需操作於高壓下,蕭基能障高度將會是重要關鍵,經實驗證明能障高度確實能以金屬快速熱退火製程的方式作調整。例如鈦金屬與4H-SiC之介面以適當溫度下加熱後,可使元件蕭基能障高度從0.65 eV最大增加至1.23 eV (其理想因子也能維持於1左右)。藉由調整能障高度能有效改善Ti- JBS元件反向漏電流過大問題。在本次實驗中最佳元件崩潰電壓操作於1 kV時反向漏電流為10 nA,於順向偏壓為2 V操作下對應電流密度為300~400 A/cm2 。另外為了達成2 Amp之規格,我們設計700 μm x700 μm尺寸相同結構元件,經封裝測試後最佳元件可達1.5 Amp而於反向操作600 V時,漏電流值小於100 μA。


    In the thesis, we investigated in the design and fabrication issues of 1200V, 2 Amp junction barrier Schottky diodes. 2-D simulation shows that varying p+ grid spacing between 2-4 μm results in optimal trade-off
    between the forward and reverse characteristics.
    We have also studied different treatments on Schottky contacts on 4H-SiC for the processing of JBS diodes. For high voltage applications, the control of Schottky barrier is very critical. In our experiments, metal- semiconductor interface properties can be adjusted by RTA process. Take Ti /4H-SiC interface for example, the Schottky barrier height would be increased from 0.65 eV to 1.23 eV with an ideality factor close to 1 by appropriate thermal treatment. As a result, we fabricated 4H-SiC Ti-JBS structures annealed at 450~550℃ for 5 minutes in vacuum. The best device shows a high reverse blocking voltage about 1 kV with a leakage current of 10 nA. Forward current density is about 300~400 A/cm2 at 2 V. Finally, we fabricated 700 um x 700um size JBS devices to increase the conduction current. The best packaged device can deliver 1.5 Amp at 2 V, while the leakage current of device is less than100 μA at -600 V.

    中文摘要 I Abstract II 第一章 序論 1 1.1碳化矽材料簡介 1 1.2 Baliga’s Figure of Merit (BFOM) 4 1.3 研究動機與大綱 4 1.4 文獻回顧 6 第二章 元件結構原理與光罩設計 10 2.1 金屬-半導體接面 10 2.2 接面位障調變 11 2.3 元件邊界保護結構 12 2.4 元件結構模擬 17 2.5 光罩設計 19 第三章 元件製程與模擬 23 3.1 對準記號 (Alignment key) 23 3.2 P型重摻雜離子佈植(P+ Ion implantation) 24 3.3 元件隔離區域 (Mesa isolation) 25 3.4 接面終結延伸 (Junction Termination Extension) 26 3.5 電性活化 (Activation) 28 3.6 表面保護層 (Passivation) 28 3.7 陰極電極 (Ohmic Contact) 29 3.8 陽極電極 (Schottky Contact) 29 3.9快速熱退火製程(Rapid Thermal Annealing) 30 3.10 厚金屬 (Top Metal) 30 第四章 實驗結果分析與討論 34 4.1 順向偏壓分析 34 4.1.1 P+ 離子佈植間距調變 35 4.1.2蕭基能障變化 37 4.1.3 蕭基金屬 37 4.1.4 雙載子導電率調變效應 40 4.1.5 元件尺寸大小分析 43 4.2 反向偏壓分析 44 4.2.1反向結構測試 44 4.2.2 JBS元件崩潰電壓與漏電流測試 45 4.2.3 蕭基金屬與漏電流分析 47 4.3封裝測試 48 第五章 結論與未來展望 49 參考文獻 52

    [1] A. R. Powell and L. M. Ghezzo, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol.90, no.6, pp.942-955, Jun. 2002.
    [2] G. R. Fisher and P. Barnes, “Toward a unified view of polytypism in silicon carbide,” Phil. Mag. B, vol.61, no.2, pp.217-236, 1990.
    [3] H. Matsunami and T. Kimoto, “Step-controlled epitaxial growth of SiC:High quality homoepitaxy,” Mater. Sci. Eng., vol.20, no.3, pp.125-
    166, Aug. 1997.
    [4] M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Devices, vol.40, no.3,
    pp.645-65, Mar. 1993.
    [5] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum semiconductors for high-power electronics,” IEEE Trans. Electron Devices, vol.36, no.9,
    pp.1811-1823, Sep. 1989.
    [6] B. J. Baliga, Power Semiconductor Devices. Boston, PWS , 1996.
    [7] R. Singh, D. C. Capell, A. R. Hefner, J. Lai, and J. W. Palmour, “High-Power 4H-SiC JBS Rectifier,” IEEE Trans. Electron Devices, vol.
    49, no.11, Nov. 2002.
    [8] B. J. Baliga, Modern Power Devices. New York, Wiley, 1987.
    [9] B. J. Baliga, “The pinch rectifier: A low-forward-drop high-speed power diode,” IEEE Electron Device Lett. vol.EDL-5, no.6, pp.194-196,
    Jun. 1984.
    [10] K. Asano, T. Hayashi, R. Saito, and Y. Sugawara, “High Temperature Static and Dynamic Characteristics of 3.7kV High Voltage 4H-SiC JBS,”
    ISPSD’2000. Toulouse, pp.97-100, May. 2000.
    [11] F. Dahlquist, J. O. Svedberg, C. M. Zetterling, M. Ӧstling, B. Breitholtz, and H. Lendenmann, “A 2.8kV forward drop JBS diode with low leakage,” Mater. Sci. Forum, vols.338-342, pp.1179-1182, 1999.
    [12] B. A. Hull, J. J. Sumakeris, M. J. O’Loughlin, Q. Zhang, J. Richmond, A. R. Powell, ”Performance and Stability of Large-Area 4H-SiC 10kV Junction Barrier Schottky Rectifiers,” IEEE Trans. Electron
    Devices, vol.55, no.8, August. 2008.
    [13] A. Liu, Y. Tao, Song Bai, Gang Chen, Ling Wang, R. Huang ,Y. Li,
    Z. Zhao, “Fabrication and High Temperature Characterization of 1200V 15A 4H-SiC JBS Diode,” Applied Mechanics and Materials, vols.713-
    715, pp.1034-1037, 2015.
    [14] D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito and C. F. Pirri, “4H- SiC Schottky Barrier Diodes Using Mo-, Ti- and Ni-Based Contacts,”
    Mater. Sci. Forum, vols.615-617, pp.647-650, 2009.
    [15] A. Kinoshita, T. Nishi, T. Ohyanagi, T. Yatsuo, K. Fukuda, H. Okumura and K. Arai,” Electrical characteristics of Ti/4H-SiC silicidation Schottky barrier diode,” Mater. Sci. Forum, vols. 600-603, pp.643-646,
    2007.
    [16] A. Kinoshita, T. Ohyanagi, T. Yatsuo, K. Fukuda ,H. Okumura and K. Arai “Fabrication of 1.2kV, 100A, 4H-SiC(0001) and (000-1) junction barrier Schottky diodes with almost same Schottky barrier height,” Mater.
    Sci. Forum, vols. 645-648, pp 893-896, 2009.
    [17] L. Calcagno, A. Ruggiero, F. Roccaforte, F. L. Via, “Effects of annealing temperature on the degree of inhomogeneity of nickel-silicide/
    SiC Schottky barrier,” Journal of Appl. Phys., vol.98, no.2,
    pp. 023713-023713-6, July. 2005.
    [18] R. Pérez, N. Mestres, J. Montserrat, D. Tournier, and P. Godignon “Barrier inhomogeneities and electrical characteristics of Ni/Ti bi-layer Schottky contacts on 4H–SiC after high temperature treatments,” Phys.
    Stat. Solidi (a), vol.202, no.4, pp.692–697, March. 2005.
    [19] I. Nikitina, K. Vassilevski, A. Horsfall, N. Wright, A. G O’Neill,
    S. K. Ray, K. Zekentes and C. M. Johnson “Phase inhomogeneity and electrical characteristics of nickel silicide Schottky contacts formed on 4H–SiC,” Mater. Sci. Forum, vols.615-617, pp.577-580, 2008.
    [20] I. P. Nikitina, K. V. Vassilevski, A. B. Horsfall, N. G. Wright, A. G. O’Neill, C. M. Johnson, T. Yamamoto and R. K. Malhan “Structural
    pattern formation in titanium–nickel contacts on silicon carbide following high-temperature annealing,” Semi. Sci. Tech., vol.21, no.7, pp.898-905,
    July. 2006.
    [21] F. Roccaforte, F. L. Via, V. Raineri, “Highly reproducible ideal SiC Schottky rectifiers: effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height,” Appl. Phys. A. vol.77, no.6, pp.827-
    833, Nov. 2003.

    [22] H. S. Lee, “High Power Bipolar Junction Transistors in silicon
    Carbide,” ISRN KTH/EKT/FR-2005/6-SE. Dec. 2005.
    [23] R. S. Singh, J. A. Cooper, M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron
    Devices. vol.49, no.4, pp. 665-672, Apr. 2002.
    [24] R. Singh, S. H. Ryu, J. W. Palmour, A. R. Hefner, J. Lai, “1500V, 4Amp 4H-SiC JBS Diodes,” ISPSD’2000. Toulouse, pp.101-104, May.
    2000.
    [25] Y. Negoro, K. Katsumoto, T. Kimoto, and Matsunami, “Electronic
    behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001),”
    Journal of Appl. Phys., vol.96, no.1, July. 2004.
    [26] A. Itoh and H. Matsunami “Analysis of Schottky Barrier Heights of Metal/SiC Contacts and Its Possible Application to High-Voltage Rectifying Devices,” Phys. Stat. solidi. (a), vol.162, no.1, pp.389-408, July. 1997.
    [27] A. F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss and H. Ryssel “Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC,” Semi.
    Sci. Tech., vol.23, no.4, pp.045-050, Apr. 2008.
    [28] R. Weiss, L. Frey, H. Ryssel “Tungsten, nickel, and molybdenum Schottky diodes with different edge termination,” Applied Surface Sci.
    vol.184, no.1, pp.413–418, Dec. 2001.
    [29] S. Toumi, A. F. Hamida, L. Boussouar, A. Sellai, Z. Ouennoughi, H. Ryssel “Gaussian distribution of inhomogeneous barrier height in tungsten /4H-SiC (000-1) Schottky diodes,” Microelectronic Engineering,
    vol.86, no.3, pp.303–309,Mar. 2009.
    [30] A. Kinoshita, T. Nishi, T. Yatsuo and K. Fukuda “Improvement of SBD Electronic Characteristics Using Sacrificial Oxidation Removing the Degraded Layer from SiC Surface after High Temperature Annealing,”
    Mater. Sci. Forum, vols.556-557, pp.877-880, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE