研究生: |
黃傑揚 HUANG, CHIEH YANG |
---|---|
論文名稱: |
具備垂直耦光特性之45度高分子聚合物反射面應用於板上光學連接模組 On-Board Optical Interconnect Module with 45 degrees reflector as Vertical Couplers |
指導教授: | 李明昌 |
口試委員: |
李明昌
洪國永 曾繁根 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 光連結器 、多模干涉耦合器 、分光器 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著光纖鋪設的普及化,光通訊已逐漸成為資訊傳播的主流,不僅是跨國界的長途訊號傳送,近十年來,光纖到府(FTTH)的概念也逐漸被應用在商用大樓甚至是家用建築。伴隨著半導體科技的進步,在相同的面積下,現有的CPU效能越來越強大,所以每一秒能產生的資訊量也被大大的增加,晶片與晶片的資料傳輸需求使得傳統使用銅纜線的技術已經遇到瓶頸。因此我們不只是想要將光訊號處理應用在大尺度上面,隨著光訊號傳輸與處理技術的成熟,以及小尺度的應用也逐漸被提出,像是光連接器(optical interconnector),光多工器(WDM)等等。使用光訊號的好處是,與電訊號相比,我們能夠顯著的提高晶片傳輸訊號的數量,然而,傳統的耦光方式,在現有追求小面積的趨勢下並不容易與現行的晶片整合,因為水平方向的光路會增加晶片尺寸,所以整合垂直方向光路的3D光晶片的概念就被提出來。
WDM(波長多波分工)這項技術是為了滿足對光通訊的大量需求被發展出來。市面上,常見的多工器模組,都是利用氣相蝕刻出來的chanel waveguide(通道波導),在上面沉積二氧化矽,並將分光蕊片安置其中。然而,為了降低製作成本以及簡化製程,如何利用不同設計已達到相同分光效果的元件便成為一件重要的事。
在這篇論文中,我們結合斜向曝光的黃光製程、漸變式錐形耦合器、脊形波導和多模干涉耦合器,實現了板上(On-Board)的光連接器,能夠在光晶片裡面垂直整合光路,並針對780nm 和 850nm波段的光進行分光,並將總能量損耗控制在30dB左右。在我們的設計過程,我們使用BPM以及FDTD進行模擬,找出在fundamental mode 的power loss最小的結構,以及針對入射的offset tolerance 進行探討。
[1] Gordon E. Moore, “Cramming More Components onto Integrated Circuits” Proceedings of IEEE(1998)
[2] Jason Cong, et al., “Challenges and Opportunities for Design Innovations in Nanometer Technologies” SRC Design Sciences Concept Paper(1997)
[3] Tim Poulus, “FTTH networking: Active Ethernet versus Passive Optical Networking and point-to-point vs. point-to-multipoint” telecompaper(2010)
[4] Kuo-Yung Hung, et al., “Optimal Fabricate Technology of Polymer Micro Optical Mirror” IEEE(2008)
[5] Kuo-Yung Hung, et al., “The application of Fresnel equation and anti-reflection technology to improve inclined exposure interface reflection and develop a key component needed for Blu-ray DVD-micro-mirrors” Journal of Micromechanics and Microengineering(2008)
[6] Nikolaos Bamiedakis, et al., “Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects” IEEE Journal of Quantum Electronics(2009)
[7] G.L. Bona et al., “Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board” IBM research paper(2004)
[8] Bert Jan Offrein, “Optical Interconnects for computing applications” Swisslasernet Workshop, IBM October(2010)
[9] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L.-S. Peh,"Research challenges for on-chip interconnection networks," IEEE Micro, pp. 96–108, Sep.–Oct. (2007)
[10] Hyo-Hoon Park, et al., “Compact Package of Optical and Electronic Components for On-Board Optical Interconnects” IEEE Transactions on Advanced Packaging(2005)
[11] Erik C. M. Pennings and Lucas B. Soldano, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, Journal of Lightwave Technology(1995)
[12] Philippe M. Fauchet, et al., “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions”IEEE JOURNAL of SELECTED TOPICS IN QUANTUM ELECTRONICS (2006)
[13] Steve Leibson, et al., “Interconnect Cross-Talk Induced Delay and Noise Glitch Analysis for Embedded Microprocessor Design” International Cadence User Group conference(2003)
[14] Shyh-Chyi Wong, Dye-Jyun Ma, Gwo-Yann Lee, “Modeling of interconnect capacitance, delay, and crosstalk in VLSI” IEEE Transactions on Semiconductor Manufacturing(2000)
[15] Sakurai, T. , “Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs” IEEE Transactions on Electron Devices(1993)
[16] Kwang-Ting Cheng, et al., “Delay testing considering crosstalk-induced effects” International Proceedings Test conference(2001)
[17] Masahiro Kanda, et al., “Optical Coupling between Optical Devices and Opto-Electronic Printed Wiring Boards” Furukawa Review (2009)
[18] Mount-Learn Wu, et al., “On-Chip Optical Interconnect Module with 3-D Optical
Path Using Guided-Wave Silicon Optical Bench” CLEO (2013)
[19] Mount-Learn Wu, et al., “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector” Optic express (2009)
[20] Fereydoon Namavar et al., “Silicon-on –Insulator optical Rib Waveguide Loss and Mode Characteristics” Journal of Lightwave Technology(1994)
[21] Ali Adibi, et al., “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects” Optics Express Vol. 17, No. 13(2009)
[22] Ray T. Chen, et al., “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler” Optics Express Vol. 21, No. 1(2013)
[23] Jun’etsu Sone, et al., “A Small and Low Cost Bidirectional Transceiver Module with Polymer Waveguide for G-PON/GE-PON” Electronic Components and Technology Conference(2007)
[24] G. R. Hadley, et al., “Reduces Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler” IEEE Photonics Technology Letters(1996)
[25] Adrian Vonsovici, et al., “The Single-Mode Condition for Semiconductor
Rib Waveguides with Large Cross Section” Journal of lightwave technology (1998)
[26]Klaus Pettermann, et al., “Large Single-Mode Rib Waveguides in Ge-Si-Si and Si-on SiO2” IEEE JOURNAL of QUANTUM ELECTRONICS (1991)
[27] Erik C. M. Penning, et al., “Optical multi-mode interderence devices based on self-imaging: principles and applications” Journal of Lightwave Technology(1995)
[28] M. Bachmann, et al., “General self-imaging properties in N x N multimode interference couplers including phase relations” Applied Optics, Vol. 33, Issue 18, pp. 3905-3911(1994)
[29] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides” Applied Phys. Letter. 27, 337(1975)
[30] Gregory P. Nordin, “Compact and low loss silicon-on-insulator rib waveguide 90∘bend” Optics Express(2006)
[31] R.G Larson, et al., “Leveling of thin films over uneven substrate during spin coating” Phys. Fluids (1990)
[32] Barry Luther-Davis, et al., “Fabrication and Characterization of low loss rib chalcogenide waveguides made by dry etching” Optics Express(2004)