簡易檢索 / 詳目顯示

研究生: 陳志嘉
論文名稱: 平板型迴路式熱管散熱之研究
The Thermal Performance Investigation of Loop Heat Pipe with Plate Evaporator
指導教授: 許文震
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 迴路式熱管平板型蒸發器熱洩漏
外文關鍵詞: loop heat pipe, flat evaporator, heat leak
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迴路式熱管(Loop Heat Pipe)具有高熱傳量、傳輸距離遠等優點,有相當大的潛力應用在電子散熱。一般圓管型迴路式熱管必須加裝鞍部(saddle)才能應用於散熱平面上,由於加裝鞍部會使得熱阻增加而影響性能,因此平板式蒸發器可改善加裝鞍部之缺點。由文獻得知平板式迴路式熱管其熱洩漏(Heat leak)問題比圓管型迴路式熱管更為嚴重,而使得在啟動困難度更高且熱阻亦較高。因此本文利用了不鏽鋼網及單層與雙層主毛細結構之應用,實驗結果發現,平板式迴路式熱管加上不鏽鋼網之應用且當有雙層主毛細結構時,可有效降低熱洩漏之影響,在低瓦數啟動及運作上更為順利。另外將蒸汽段液體管路管徑由3mm改成4mm,蒸汽流動阻力降了約四倍之多,可增加熱傳量。在熱源溫度不超過100℃、熱沉溫度30℃的情況下,水平狀態下操作可達140W,垂直狀態下可達170W。


    Loop Heat Pipes (LHPs), which are generally and widely used with cylindrical evaporators, have a great potential for applications on spacecrafts and electronic cooling due to the advantages of high transfer capacity and long transport distances. However, the cylindrical evaporators of loop heat pipes cannot work on a flat thermo-contact surface without saddle. The saddle creates an extra thermal resistance. To avoid the above disadvantages, we utilize the flat evaporators of loop heat pipes. According to the literature, however, the heat leak problem is more serious in the flat evaporators than in the cylindrical evaporators. This problem also makes more difficult start-up and higher thermal resistance of flat evaporators. Hence this study uses stainless steel mesh and compares the affect of one or two primary wick structure. The results show that that method can ease heat leak problem, when flat evaporators of loop heat pipes have stainless steel mesh and two primary wick structures. Then loop heat pipes can start-up and work more easily at low load. Vapor flow resistance drops by four times and increases heat transfer when diameter of vapor line increases from 3mm to 4mm. When the temperature of the heater is less than 100 oC and the sink temperature is at 30oC, the maximum heat capacity reaches 140W for horizontal orientation and 170W for vertical orientation.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-3 研究動機 12 第二章 實驗原理 13 2-1 迴路式熱管操作原理 13 2-1-1 毛細限制 15 2-1-2 啟動限制 16 2-1-3 液體過冷度限制 16 2-1-4 補償室體積限制 17 2-2 流動壓降分析 18 2-2-1 蒸汽溝槽內之蒸汽流動壓降 18 2-2-2 液-汽介面之毛細壓差 19 2-2-3 氣體段流動壓降 21 2-2-4 重力壓降 21 2-2-5 流經毛細結構之壓降 22 2-3 熱阻分析 23 2-3-1 蒸發器熱阻 23 2-3-2 冷凝器熱阻 25 第三章 迴路式熱管的設計與製作 27 3-1 迴路式熱管之設計方法 27 3-1-1 工作流體之選擇 28 3-1-2 系統材質之選擇 31 3-1-3 蒸發器之設計 31 3-1-4 毛細結構之設計 33 3-1-5 蒸發器內毛細結構配置 35 3-1-6 冷凝器之設計 36 3-1-7 傳輸管路設計 37 3-1-8 不鏽鋼網的應用 37 3-2 迴路式熱管之製作 37 第四張 實驗設備與性能測試 43 4-1 實驗設備 43 4-2 熱電偶校正 45 4-3 誤差分析 46 4-4 毛細結構性質量測 48 4-4-1 有效孔徑 48 4-4-2 滲透度 49 4-4-3 孔隙度 50 4-4-4 毛細結構參數量測結果 51 4-5 性能測試 54 4-5-1 實驗方法 54 4-5-2 實驗步驟 56 第五章 性能測試結果與討論 58 5-1 啟動測試及不□鋼網的應用 58 5-2 作動現象探討 61 5-3 操作溫度探討 63 5-4 加熱密度探討 66 5-5 高瓦數啟動與大幅度瓦數調整 68 5-6 TYPE 2探討 70 5-7 TYPE 1與3的比較探討 74 5-8 冷凝長度測試結果 76 5-9 TYPE 3與4的比較探討 77 5-10 最大熱傳量與負角度測試 79 第六章 結論與建議 82 6-1 結論 82 6-2 未來展望 83 參考文獻 84 附錄 87 附錄A 常用工作流體性質【25】 87 附錄B 不同工作流體與材料相容性【25】 88 附錄C 迴路式熱管基本參數 89

    【1】http://www2.jpl.nasa.gov/adv_tech/thermal/summary.htm
    【2】1974, “Heat Pipe”USSR Certificate 449213.
    【3】Wolf et al., 1994, “Loop Heat Pipes-their Performance and Potential” SAE paper 941575.
    【4】J.T. Dickey, G.P. Peterson, 1994, “Experimental and Analytical Investigation of a Capillary Pumped Loop”Journal of Thermophysics and Heat Transfer Vol.8 No.3 July-Sept.
    【5】Maidanik, Y.F., 1994, “Design and Investigation of Methods of Regulation of Loop Heat Pipes for Terrestrial and Space Applications”, Institute of Thermodynamics. Ural Division of the Russian Academy of Sciences, SAE Technical Paper 941407.
    【6】Kiseev, V.V. et al., 1997, “Development of Two-phase Loops with Capillary Pumps” SAE Paper 972482.
    【7】Gerhart, C. et al., 1999, “Initial Characterization Results of Metal Wick Capillary Pumps”, Space Technology and Application International Forum pp938-942.
    【8】V.G.Pastukhov et al., 1999, “Development and Investigation of Miniature Loop Heat Pipes”, SAE Paper 1999-01-1983.
    【9】Kaya, T. and Hoang, T.T., 1999, “Mathematical Modeling of Loop Heat Pipes and Experimental Validation”, Journal of Thermophysics and Heat Transfer, Vol.3, No.3.
    【10】Maidanik,Y.F. and Pastukhov V.g.,1999,“Loop Heat Pipes-Recent Developments Test Results and Applications”,SAE Paper 1999-02-2530.
    【11】Maidanik, Y.F., Vershinin, S.V. and Chernysheva, M.A., 2000, “Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator”, SAE Paper 2000-01-2491,pp.652-656.
    【12】Kaya, T., Baker, C. and Ku, J., 2000, “Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes”, SAE Paper 2000-01-2406, pp.580-586.
    【13】Ku J. et al., 2001, “Investigation of Low Power Operation in a Loop Heat Pipe”, SAE Paper 2001-01-2191.
    【14】Muraoka, I. et al., 2001, “Analysis of the Operational Characteristics and Limits of a Loop Heat Pipe with Porous Element in the Condenser”, International Journal of Heat and Mass Transfer, VOL.44, pp.2287-2297.
    【15】Kim, K-S. et al., 2003, “Heat Pipe Cooling Technology for Desktop PC CPU”, Applied Thermal Engineering 23 pp.1137-114.
    【16】Maidanik, Y.F. et al., 2004, “Review Loop Heat Pipes”, Applied Thermal Engineering 25 pp.635-657.
    【17】Riehl, R.R., et al., 2004, “Evaluating the Bahavior of Loop Heat Pipe with Different Compensation Chamber Configurations”, 13th International Heat Pipe Confernce, September 21-25, Shangai, Chian.
    【18】Riehl, R.R., Siqueira, T.C.P.A., 2005, “Evaluating Loop Heat Pipes Performances Regarding Their Geometric Characteristics”, Proceedings of the 35th International Conference on Environmental Systems, Rome, Italy,July 11-15, paper# 2005-01-2882.
    【19】Mastaka et al., 2006, “Thermal Performance of Miniature Loop Heat Pipe Operating Under Different Heating Modes”, Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, v 2006, Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems, ITherm , p 557-562 IEEE.
    【20】Riehl, R.R., 2006, “Analysis of Loop Heat Pipe Behavior Using Nanofluid”, Heat Powered Cycles International Conference-Newcastle, UK, September.11-14.
    【21】Randeep Singh et al., 2007, “Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU”, IEEE Transactions on Components and Packaging Technologies, Vol.30, No.1.
    【22】Po-Ya Abel Chuang, 2003, “An Improved Steady-State Model of Loop Heat Pipes Based on Experiment and Theoretical Analyses”, The Pennsylvania State University.
    【23】C&R Technologies “Loop Heat Pipe Prebuilt Model User Documentation” March 1, 2004 LHP Prebuilt Version 4.6 Rev.
    【24】Chi, S, W., Heat Pipe Theory and Practice, McGraw-Hill, New York, 1976.
    【25】Dunn, P.D.; Reay, D.A. Heat Pipes, Pergamon Elsevier Sciense Ltd., 4th Edition, London, 1994.
    【26】H. Wulz and E. Embacher, 1990 “Capillary Pumped Loops for Space Application Experimental and Teoretical Studies on the Performance of Capillary Evaporator Desogns”, AIAA Paper 90-1739.
    【27】Faghri, A., 1995, ”Heat Pipe Science and Technology”, Taylor
    and Francis, Washington, D.C.
    【28】S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, 2004, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht.
    【29】陳力俊 等著, 1994,「材料電子顯微鏡學」,行政院國家科學 委員會精密儀器發展中心。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE