簡易檢索 / 詳目顯示

研究生: 楊竣傑
Yang, Jun-Jie
論文名稱: 具有延遲選項的單邊壅塞賽局
Single-Egde Congestion Games with Delay Options
指導教授: 韓永楷
Hon, Wing-Kai
陳柏安
Chen, Po-An
口試委員: 李哲榮
Lee, Che-Rung
林莊傑
Lin, Chuang-Chieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 33
中文關鍵詞: 壅塞賽局納許均衡延遲選項
外文關鍵詞: Congestion game, Nash equilibrium, Delay options
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在壅塞賽局中,每一個玩家都可以根據自己的策略去決定該使用哪些資源,而選擇
    同一資源的人數多寡會相對應地給該資源玩家帶來延遲;玩家的目的則是最小化自己
    的延遲。在這篇論文中,我們提出了考慮「等待時間」的壅塞賽局。「等待」這件事
    情是被先前的人所忽略的,但在現實生活中卻是隨處可見,如上班族會預期交通尖峰
    時段特別壅塞,而傾向更早或更晚出門,使在路上的花費時間變少,讓其時間使用效
    能更好。在本論文中,我們使用了不同的方法去證明對這種新的壅塞賽局模型來說,
    是可以達到近似納許均衡,且這些方法各有特色,可以是由中央控管,也可以是無政
    府狀態。最後也證明了當玩家數眾多時,我們得到的最壞均衡比是很靠近1的。


    In a congestion game, each player can decide which resource to use based on their own
    strategy. The number of players choosing a particular resource will cause latency for each
    of the corresponding players. Each player’s objective is to minimize her own latency. In
    this thesis, we propose a congestion game that takes waiting time into consideration, where
    the notion of waiting has been overlooked by previous studies, but yet it is ubiquitous
    in real life. For example, commuters expect heavy traffic during peak hours and tend to
    leave for work earlier or later than needed to reduce overall travel time, thus utilizing
    their time better. We use different algorithms to find approximate Nash equilibria in this
    new form of congestion game. These algorithms have different characteristics, such as
    centrally controlled, or in a state of anarchy. Finally, we also demonstrate when there are
    many players, the price of anarchy is very close to 1.

    Abstract (Chinese) i ABSTRACT ii Contents iii List of Figures v List of Tables vii 1 Introduction 1 1.1 Previous Work . . . . . . . 3 1.2 Contributions . . . . . . . 5 1.3 Thesis Organization . . . . . . . 5 2 Preliminaries 6 2.1 Game and terminology . . . . . . . 6 2.2 General congestion games . . . . . . . 10 3 Our Model 11 4 Approximate Nash Equilibrium 15 4.1 Restricted best-response dynamics . . . . . . . 15 4.2 Learning-based method . . . . . . . 16 4.3 Binary search . . . . . . . 17 5 Price of anarchy 20 6 Experiments 22 6.1 Restricted best-response dynamics . . . . . . . 22 6.2 Multiplicative weight update . . . . . . . 23 6.3 Price of Anarchy . . . . . . . 28 7 Conclusions and Future Works 31 Bibliography 32

    [1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplicative Weights Update
    Method: A Meta-Algorithm and Applications. Theory of Computing, 8(1):121–164,
    2012.
    [2] Baruch Awerbuch, Yossi Azar, Leah Epstein, Amos Fiat, Stefano Leonardi, and
    Vahab S. Mirrokni. The Price of Routing Unsplittable Flow. SIAM Journal on
    Computing, 34(2):511–530, 2005.
    [3] Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Taxes for
    Linear Atomic Congestion Games. ACM Transactions on Algorithms, 7(1), 2010.
    [4] Yoav Freund and Robert E. Schapire. Adaptive Game Playing Using Multiplicative
    Weights. Games and Economic Behavior, 29(1):79–103, 1999.
    [5] Anupam Gupta. Lecture 16: Multiplicative weights algorithm algorithms.
    https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/
    www/notes/lecture16.pdf. Lecture notes.
    [6] Sushil K Gupta and Jerzy Kyparisis. Single Machine Scheduling Research. Omega,
    15(3):207–227, 1987.
    [7] Tanmoy Hazra and Kushal Anjaria. Applications of Game Theory in Deep Learning:
    A Survey. Multimedia Tools and Applications, 81(6):8963—-8994, 2022.
    [8] Elias Koutsoupias and Christos Papadimitriou. Worst-Case Equilibria. Computer
    Science Review, 3(2):65–69, 2009.
    [9] Dov Monderer and Lloyd Shapley. Potential Games. Games and Economic Behavior,
    14:124–143, 1996.
    [10] Noam Nisan, Tim Roughgarden, and Vijay V. Vazirani Eva Tardos. Algorithmic
    Game Theory. Cambridge University Press, 2007.
    [11] Peter C. Ordeshook. Game Theory and Political Theory: An Introduction. Cambridge
    University Press, 1986.
    [12] Dario Paccagnan, Rahul Chandan, Bryce L. Ferguson, and Jason R. Marden. Optimal
    Taxes in Atomic Congestion Games. ACM Transactions on Economics and
    Computation, 9(3), 2021.
    [13] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
    of Mathematical Statistics, 22(3):400–407, 1951.
    [14] Robert Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.
    International Journal of Game Theory, 2:65–67, 1973.
    [15] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.
    [16] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
    Princeton University Press, 1947.
    [17] Jorgen W. Weibull. Evolutionary Game Theory. The MIT Press, 1997.
    [18] Wikipedia. Prisoner’s Dilemma. https://en.wikipedia.org/wiki/Prisoner%27s_
    dilemma, 2023. [Online; accessed 04-February-2023].

    QR CODE