簡易檢索 / 詳目顯示

研究生: 張舫嫕
Fang-Yi, Chang
論文名稱: 表面改質中孔洞二氧化矽的二氧化碳吸附
The Adsorption of CO2 on Amine Modified Mesoporous Silica
指導教授: 趙桂蓉
Kuei-jung Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 150
中文關鍵詞: 中孔洞二氧化矽二氧化碳
外文關鍵詞: Mesoporous Silica, CO2, amine
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以一維孔道結構的中孔洞二氧化矽為載體,將具有氨基的改質劑,以矽烷化作用接合於其孔道壁上,並進行含氨基中孔洞二氧化矽的二氧化碳吸附。
    首先以3-乙氧基矽烷基丙胺(mono-amine) 作表面改質,不同孔徑大小的圓柱狀孔道結構之中孔洞二氧化矽MCM-41,SBA-15及擴孔後的SBA-15為載體。然後使用三種氨改質劑 (3-乙氧基矽烷基丙胺,mono-amine;N-三甲氧基矽烷基乙二胺,di-amine;N-三甲氧基矽烷基二乙基三胺,tri-amine),調整改質的反應條件,進行中孔洞二氧化矽 SBA-15 的表面修飾。在鑑定分析方面,分別以粉末X光繞射、等溫氮氣吸附等方法分析改質後樣品的結構及孔洞變化,並進行其二氧化碳的吸附。由元素分析、熱重分析法偵測含氨基中孔洞二氧化矽樣品的氮含量及熱穩定性,且以紅外光譜偵測其吸附二氧化碳後,所形成的carbamate 或 alkylammonium carbonate / bicarbonate等物種,及這些物種於120 oC脫附二氧化碳的變化情形;推導出固體上氨基吸附二氧化碳的反應機制,及水對二氧化碳吸附的影響。並由熱重-質譜實驗得知120 oC是脫附二氧化碳的合適溫度。


    In this thesis, mesoporous silica of one-dimensional channel structure loaded with amine was used for CO2 adsorption.
    Cylindric mesoporous silica MCM-41, SBA-15 or pore-expanded SBA-15 silicas were used as supports for grafting 3-aminopropyl-triethoxysilane (mono-amine), N-[3-(trimethoxysilyl) propyl]ethylene diamine (di-amine), or N-[3-(trimethoxysilyl)propyl] diethylene triamine (tri-amine). The pore structure of amine-functionalized silicas was characterized by powder X-ray diffraction and N2 adsorption /desorption at 77 K, and their carbon dioxide adsorption capacity was also examined. Fuethermore, the nitrogen content and thermal stabilities of amine-functionalized SBA-15 were analyzed by elemental and thermal gravimetric methods. The reaction mechanism of CO2 adsorption on amine-grafted SBA-15 have been proposed in the presence and absence of water vapor, and confirmed by Infrared spectroscopy. The captured CO2 could be almost completely removed from amine-SBA-15 at 120 oC detected by TGA-MS.

    第一章 緒論 1 1.1中孔洞二氧化矽材料 1 1.2中孔洞二氧化矽之表面化學與孔道修飾 6 1.3表面氨化改質的固體吸附劑之二氧化碳吸附 14 1.4二氧化碳與氨的作用 22 1.5本研究的目的及方法 30 第二章 實驗 32 2.1樣品的製備 32 2.1-1實驗藥品 32 2.1-2中孔洞二氧化矽材料的合成 33 2.1-3有機模板分子移除 38 2.1-4表面改質 39 2.2固體樣品的鑑定及分析 44 2.2-1粉末X光繞射 (Powder X-ray Diffraction) 44 2.2-2氮氣等溫物理吸附 (Physical Adsorption of Nitrogen) 45 2.2-3場發射掃描式電子顯微鏡 (Thermal type Field Emission Scanning Electron Microscope) 46 2.2-4高解析穿透式電子顯微鏡 (High Rsolution Transmission Electron Microscope) 47 2.2-5霍氏轉換紅外光譜(Fourier Transform Infrared Spectroscopy) 48 2.2-6元素分析 (Elemental Analysis) 48 2.2-7熱重分析 (Thermal Gravimetric Analysis) 49 2.3二氧化碳的吸附測定 50 第三章 結果及討論 54 3.1以mono-amine表面改質的中孔洞二氧化矽 (M41、S15a 及S15P)及其二氧化碳吸附 54 3.1-1粉末X光繞射 54 3.1-2等溫氮氣吸附分析 60 3.1-3以模型估計改質後孔徑變化 66 3.1-4二氧化碳之吸附 69 3.2改質的中孔洞二氧化矽 (S15b) 的製備及二氧化碳吸附 72 3.2-1樣品的性質鑑定 73 3.2-2 mono-, di-, tri-amine與二氧化碳之吸附 77 3.3依T2條件改質SBA-15中孔洞二氧化矽表面 80 3.3-1利用 FT-IR偵測樣品表面有機官能基的變化 80 3.3-1.1有機模板分子的移除 80 3.3-1.2改質前後之樣品 82 3.3-1.3改質後樣品之二氧化碳吸附及脫附 83 3.3-2元素 (EA)分析 85 3.3-3熱重(TGA)分析 86 3.3-4氨在S15b-c的表面覆蓋率 91 3.4固體表面氨基的二氧化碳吸附機制 94 3.4-1 固體表面氨基的吸附CO2 反應 95 3.4-2 在水氣存在下,表面氨基與 CO2 氣體的反應 100 3.5討論 103 第四章 結論 107 第五章 參考文獻 108 附錄A 113 附錄B 119 附錄C 123 附錄D 128 附錄E 133

    [1] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature 1992, 359, 710.
    [3] N. K. Raman, M. T. Anderson and C. J. Brinker, Chem. Mater. 1996, 8, 1682.
    [4] X. S. Zhao, G. Q. (Max) Lu and G. J. Millar, Ind. Eng. Chem. Res. 1996, 35,2075.
    [5] J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc., Faraday Trans. 1976, 72, 1525.
    [6] G. J. D. A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
    [7] Q. Huo, R. Leon, P. M. Petroff and G. D. Stucky, Science 1995, 268, 1324.
    [8] Q. Huo, O. David, I. Margolese and G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    [9] S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson, A. Monnier, Chem. Mater., 2001, 13, 2247.
    [10] D. Zhao, Q. Huo, J. Feng, B. F. Chemelka and G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
    [11] P.Schmidt-Winkel, C. J. Glinka, G. D. Stucky, Langmuir 2000, 16, 356.
    [12] S. Andreas, B. J. Melde and R. C. Schroden, Adv. Mater. 2000, 12, 1403.
    [13] E. F. Vansant, P. Van Der Voort and K. C. Vrancken, “Characterization and Chemical Modification of The Silica Surface”, studies in surface science and catalysis 193 ELSEVIER (1995).
    [14] X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar and H. Y. Zhu, J. Phys. Chem. B 1997, 101, 6525.
    [15] D. Kumar, K. Schumacher, C. du Fresne von Hohenesche , M. Grun and K.K. Unger, Colloids Surf. A 2001, 187-188, 109.
    [16] I. G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht, N. S. Golubev, G. H. Findenegg and H. H. Limbach, J. Phys. Chem. B 2003, 107, 11924.
    [17] 卓恩宗,國立清華大學化學所碩士論文,2001。
    [18] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater. 2000, 12, 1961.
    [19] H. S. Yang, S. Y. Choi, S. H. Hyun, H. H. Park, J. K. Hong, J. Non-Cryst. Solids 1997, 221, 151.
    [20] J. Lin, X. Feng, G, Fryxell, L. Q. Wang, A. Y. Kim and M. Gong, Adv. Mater. 1998, 10, 161.
    [21] E. B. Rinker, S. S. Ashour and O. C. Sandall, Ind. Eng. Chem. Res. 2000, 39, 4346.
    [22] R. V. Siriwardane, M. S. Shen, E. P. Fisher and J. A. Poston, Energy & Fuels 2001, 15, 279.
    [23] R. J. Little,; G. F. Versteeg, W. P. M. Van Swaaij,. Chem. Eng. Sci. 1992, 47, 2037.
    [24] R. J. Hook, Ind. Eng. Chem. Res. 1997, 36, 1779.
    [25] R. S. Franchi, P. J. E. Harlick and A. Sayari, Ind. Eng. Chem. Res. 2005, 44, 8007.
    [26] X.Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Energy & Fuels 2002, 16, 1463.
    [27] S. Kim, J. Ida, V. V. Guliants and J. Y. S. Lin, J. Phys. Chem. B 2005, 109, 6287.
    [28] O. Leal, C. Bolivar, C. Ovalles, J. J. Garcia and Y. Espidel, Inorganica Chimica Acta. 1995, 240, 183.
    [29] H. Y. Huang and R. T. Yang, Ind. Eng. Chem. Res. 2003, 42, 2427.
    [30] N. Hiyoshi, K. Yogo and T. Yashima, Chem. Let. 2004, 33, 510.
    [31] N. Hiyoshi, K. Yogo and T. Yashima, Microporous Mesoporous Mater. 2005, 84, 357.
    [32] G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee, Fuel Processing Technology 2005, 86, 1435.
    [33] G. P. Knowles, S. W. Delaney, A. L. Chaffee, Stud. Surf. Sci. Catal. 2005, 156, 887.
    [34] G. P. Knowles, S. W. Delaney, A. L. Chaffee, Ind. Eng. Chem. Res. 2006, 45, 2626
    [35] P. J. E. Harlick and A. Sayari, Ind. Eng. Chem. Res. 2006, 45, 3248.
    [36] P. J. E. Harlick and A. Sayari, Ind. Eng. Chem. Res. 2007, 46, 446.
    [37] P. V. Danckwerts and K. M. McNeil, Trans. Inst. Chem. Eng. 1967, 45, T32.
    [38] M. Caplow, J.Am. Chem. Soc. 1968, 90, 6795.
    [39] S. Mamun, V. Y. Dindore and H. F. Svenden, Ind. Eng. Chem. Res. 2007, 46, 385.
    [40] J. E. Crooks and J. P. Donnellan, J. Chem. Soc. Perkin Trans. II 1989, 331.
    [41] A. Hartono, E. F. D. Silva, H. Grasdalen and H. F. Svendsen, Ind. Eng. Chem. Res. 2007, 46, 249.
    [42] A. C. C. Chang, S. S. C. Chuang, M. Gray and Y. Soong, Energy & Fuels 2003, 17, 468.
    [43] R. A. Khatri, S. S. C. Chuang, Y. Soong and M. Gray, Energy & Fuels 2006, 20, 1514.
    [44] R. A. Khatri, S. S. C. Chuang, Y. Soong and M. Gray, Ind. Eng. Chem. Res. 2005, 44, 3702.
    [45] M. L. Gray, Y. Soon, K. J. Champagnea, J. Baltrus, R. W. Stevens, Jr, P. Toochinda, S. S. C. Chuang, Separation and Purification Technology 2004, 35, 31.
    [46] F. Zheng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, T. S. Zemanian and C. L. Aardahl, Ind. Eng. Chem. Res. 2005, 44, 3099.
    [47] C. N. Wu, T. S. Tsai, C. N. Liao and K. J. Chao, Microporous Mater. 1996, 7, 173.
    [48] G. D. Stucky, B. F Chmelka, D. Zhao, N. Melosh, Q. Huo, J. Feng, P. Yang, D. Pine, D. Margolese, W. Lukens, Jr., G. H. Fredrickson and P. Schmidt-Winkel, PCT Int. Appl. 9937705, 1999.
    [49] 李樹恩和吳泰伯,X光繞射原理與材料結構分析,16頁,1993。
    [50] Bharat Bhushan, “Handbook of micro/nano tribology”, 2nd (2000).
    [51] N. Garcia, E. Benito, J. Guzman, P. Tiemblo, V. Morales and R. A. Garcia, Microporous and Mesoporous Mater. 2007, 106, 129.
    [52] K. Albert, J. Sep. Sci. 2003, 26, 215.
    [53] B. D. Vogt, R. A. Pai, H. J. Lee, R. C. Hedden, C. L. Soles, W. L. Wu, E. K. Lin, B. J. Bauer and J. J. Watkins, Chem. Mater. 2005, 17, 1398.
    [54] 邱建洋,國立清華大學化學所碩士論文,2004。
    [55] 鄭明欣,國立清華大學化學所碩士論文,2003。
    [56] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
    [57] M. Baerns, H. Hofmann, A. Renken Chemische Reaktionstechnik, Georg Thieme Verlag, Stuttgart, New York 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE