簡易檢索 / 詳目顯示

研究生: 陳佩纖
Chen, Pei-Hsien
論文名稱: 以紅外線測溫與質點影像測速技術探討具百葉窗擾流器管道脈動紊流與熱傳增益
IRT and PIV Study on Pulsatile Turbulent Channel Flow and Heat Transfer Enhancement with Louvered Turbulators
指導教授: 劉通敏
Liou, Tong-Miin
張始偉
Chang, Shyy-Woei
口試委員: 吳興茂
Wu, Sing-Maw
張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 156
中文關鍵詞: 三維百葉窗擾流器質點影像測速儀紅外線熱像儀脈動流熱傳增益
外文關鍵詞: Louvered-type turbulators, Particle Image Velocimetry, Infrared Thermography, Pulsating flow, Heat Transfer Enhancement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於能源枯竭,因此為了提高能源轉換的效率,高效率熱交換器已成為工業界及學術界共同努力的目標。在熱交換器內加裝擾流器,如肋條(Rib)、折流板(Baffle)等是提升其熱傳效率的最佳方式之一。而本研究根據前人所設計之三維百葉窗型擾流器百葉窗(Louver),並透過紅外線測溫儀(Infrared Thermography,IRT)、質點影像測速儀(Particle Image Velocity,PIV)與壓力傳感器量測於正方形雙通道內的穩態及脈動兩種入口條件下之紊性熱流場。在穩態下百葉窗擾流器之扇葉攻角固定為30度,截距比(Pi⁄DH )與雷諾數(Re)變化參數分別為1、1.25、1.5及5,000至20,000。由實驗結果發現在Pi⁄DH =1.25之下,相較於前人之百葉窗擺放方式,於定泵功率條件,其TPF可以提升6.9-12.1%。而為了進一步提升熱傳效果,將原先穩態改為脈動入口邊界條件,並在最佳截距比條件下變化脈動頻率,史卓赫數(St)介於0.2至0.7,探討其熱傳增益及壓損變化。實驗結果指出,熱傳增益及壓損會隨著脈動頻率單調提升,在史卓赫數0.7時擁有最佳熱傳增益,相較於穩態條件下提升26.8%;並由實驗數據提出一個可應用於三維百葉窗型擾流器與平滑管道在穩態及脈動下之經驗公式來預測紐賽數


    Due to the exhaustion of energy, high-efficiency heat exchangers have become the goal of industry and academia in order to improve the efficiency of transform. To install turbulators, such as Ribs, Baffle, etc. is one of the best ways to improve the heat transfer efficiency. This study is base on a 3-D louver-type turbulator which is designed by the previous study, and the turbulent heat flow field under steady-state and pulsating inlet conditions in a square two-pass channel is measured by Infrared Thermography(IRT), Particle Image Velocimetry(PIV) and Pressure transfer. At steady state, the slat attack angle at louver-type turbulator is fixed at 30∘, pitch ratio and Reynolds number are in the range of 1, 1.25, 1.5, and 5,000 to 20,000. It is found from the experimental results that when the pitch ratio is 1.25, the thermal performance factors(TPF) in the present case are 6.9-12.1% higher than the previous study. In order to further improve the heat transfer effect, the origin steady state is changed to pulsation inlet boundary condition, the pitch ratio is fixed at 1.25 and Strouhal number is in the range of 0.2 to 0.7. Consequently, the heat transfer enhancement and pressure drop simultaneously elevate when the pulsating frequency increase and the pulsating frequency St=0.7 has the best heat transfer enhancement, and which is 26.8% higher than the steady state. Based on the experimental results, an empirical correlation can be proposed to apply to a 3-D louvered-type and smooth channel under steady and pulsation flow to predict the Nusselt number.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIV 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 低阻擋比擾流器 3 1-2-2 高阻擋比擾流器 10 1-2-3 脈動流 13 1-3 研究目的 15 1-3-1 穩態流 16 1-3-2 脈動流 17 第2章 實驗系統與方法 36 2-1 實驗模型及構造 36 2-1-1 流力實驗模型 36 2-1-2 熱傳實驗模型及壓力量測方式 37 2-1-3 脈動閥模型 37 2-1-4 三維百葉窗擾流器幾何結構 38 2-2 實驗系統 38 2-2-1 內流道冷卻系統 38 2-2-2 光學量測系統 39 2-2-3 全域熱傳量測系統 42 2-2-4 壓力量測系統 43 2-3 實驗條件及校正 43 2-3-1 實驗條件 43 2-3-2 紅外線熱像儀校正 44 2-3-3 熱損失實驗 45 第3章 實驗數據處理及誤差分析 62 3-1 實驗數據處理 62 3-1-1 熱傳實驗數據處理 62 3-1-2 壓力量測數據處理 63 3-2 實驗誤差估算及分析 64 第4章 於雙通道中加裝百葉窗型擾流器之穩態實驗結果與討論 67 4-1 穩態實驗技術驗證 67 4-1-1 全展下方管主流速度驗證 67 4-1-2 熱傳實驗技術驗證 67 4-1-3 壓損實驗技術驗證 68 4-2 截距比與交錯擺放之效應 68 4-2-1 紐塞數分佈 68 4-2-2 整體平均熱傳及壓損 73 4-2-3 當前實驗結果與先前文獻比較 75 4-3 流場結構 78 4-3-1 第一通道流場結構 78 4-3-2 轉彎區流場結構 80 4-3-3 第二通道流場結構 82 4-4 熱傳與流場相關性 84 第5章 於雙通道中加裝百葉窗型擾流器之脈動實驗結果與討論 104 5-1 脈動實驗條件 104 5-2 脈動實驗邊界條件 104 5-3 脈動實驗技術驗證 104 5-3-1 全展下方管主流速度驗證 105 5-3-2 熱傳實驗技術驗證 105 5-4 脈動頻率效應 106 5-4-1 紐塞數分佈 106 5-4-2 整體平均熱傳及壓損 107 5-4-3 當前實驗結果與先前文獻比較 109 5-5 流場結構 110 5-5-1 第一通道流場結構 110 5-5-2 轉彎區流場結構 113 5-5-3 第二通道流場結構 116 5-6 熱傳及流場相關性 118 5-7 熱傳關係式 119 第6章 結論 141 6-1 結論 141 6-1-1 穩態流 141 6-1-2 脈動流 141 6-2 未來建議 142 附錄A論文口試之補充答辯 144 參考文獻 149

    [1] A.E. Bergles .Heat Transfer Enhancement-The Encouragement Accommodation of High Heat Fluxes, Journal of Heat Transfer 119(1), 8-19 (Feb 01, 1997)
    [2] A. Dewan , P. Mahanta , K. S. Raju, , P. S. Kumar. Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(7), 509-527. (2004)
    [3] S. Liu, M. Sakr , A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and sustainable energy reviews, 19, 64-81. (2013).
    [4] X. Wang , N. Zhang. Numerical analysis of heat transfer in pulsating turbulent flow in a pipe. International Journal of Heat and Mass Transfer, 48(19-20), 3957-3970. (2005).
    [5] T. S. Griffith , L. A-l. Hadhrami , J. C. Han. Heat Transfer in Rotating Rectangular Cooling Channels AR= 4 With Dimples. J. Turbomach., 125(3), 555-563.. (2003)
    [6] S. W. Moon , S. C. Lau, Turbulent heat transfer measurements on a wall with concave and cylindrical dimples in a square channel, In ASME Turbo Expo Power for Land, Sea, and Air (pp. 459-467) (2002)
    [7] J. C. Han , Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls. J. Heat Transfer 106(4), 774-781 (1984)
    [8] T. M. Liou , J. J. Huang . Effect of ridge shapes on turbulent heat transfer and friction in a rectangular channel , International Journal of Heat and Mass Transfer 36.4: 931-940. (1993)
    [9] T. M. Liou , W. B. Wang , Y. J. Chang , Holographic interferometry study of spatially periodic heat transfer in a channel with ribs detached from one wall , Journal of Heat Transfer 117.1: 32-39 (1995)
    [10] T. M. Liou , S. H. Chen , Turbulent heat and fluid flow in a passage disturbed by detached perforated ribs of different heights . International Journal of Heat and Mass Transfer 41.12: 1795-1806 (1998)
    [11] T. M. Liou , C. C. Chen , T. W. Tsai , Heat Transfer and Fluid Flow in a Square Duct with 12 Different Shaped Vortex Generators , Journal of Heat Transfer 122(2) 327-335. (2000)
    [12] T. M. Liou , M. Y. Chen , Y. M. Wang . Heat Transfer, Fluid Flow, and Pressure Measurements Inside a Rotating Two-Pass Duct With Detached 90 Ribs. ASME Turbo Expo 2002: Power for Land, Sea, and Air. American Society of Mechanical Engineers. (2002)
    [13] S. Y. Son, K. D. Kihm, J. C. Han. PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls. International Journal of Heat and Mass Transfer 45.24: 4809-4822. (2002)
    [14] L. Wang, B. Sundén .Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat and Mass Transfer, 43(8), 759. (2007).
    [15] L. Wang, B. Sundén. Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat and Mass Transfer, 43(8), 759. (2007)
    [16] T. M. Liou, Y. S. Hwang, M. Y. Chen . Heat transfer improvement by arranging detached ribs on suction surfaces of rotating internal coolant passages, International Journal of Heat and Mass Transfer 50.11-12: 2414-2424. (2007)
    [17] C. Nuntadusit, Thermal visualization on surface with transverse perforated ribs. International Communications in Heat and Mass Transfer 39.5: 634-639. (2012)
    [18] J. C. Han, L. R. Glicksman & W. M. Rohsenow. An investigation of heat transfer and friction for rib-roughened surfaces. International Journal of Heat and Mass Transfer 21.8: 1143-1156. (1978)
    [19] J. C. Han, J. S. Park, C. K. Lei. Heat transfer enhancement in channels with turbulence promoters. Journal of Engineering for Gas Turbines and Power 107.3: 628-635. (1985)
    [20] J. C. Han , Y. M. Zhang , C. P. Lee . Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. Journal of Heat Transfer 113.3: 590-596. (1991)
    [21] J. C. Han & Y. M. Zhang. High performance heat transfer ducts with parallel broken and V-shaped broken ribs. International Journal of heat and mass transfer 35.2: 513-523. (1992)
    [22] M. E. Taslim , T. Li , D. M. Kercher. Experimental heat transfer and friction in channels roughened with angled, V-shaped and discrete ribs on two opposite walls. ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers. (1994)
    [23] S. Dutta , J. C. Han , Y. M. Zhang. Influence of rotation on heat transfer from a two-pass channel with periodically placed turbulence and secondary flow promoters. International Journal of Rotating Machinery 1.2: 129-144. (1995)
    [24] H. Iacovides , G. Kelemenis , M. Raisee. Flow and heat transfer in straight cooling passages with inclined ribs on opposite walls: an experimental and computational study. Experimental Thermal and Fluid Science 27.3: 283-294. (2003)
    [25] M. E. Taslim, H. Liu. A Combined Numerical and Experimental Study of Heat Transfer in a Roughened Square Channel with 45∘Ribs. International Journal of Rotating Machinery 2005.1: 60-66. (2005)
    [26] T. M. Liou, S. W. Chang, J. S. Chen, T. L. Yang, Y. A. Lan. Influence of channel aspect ratio on heat transfer in rotating rectangular ducts with skewed ribs at high rotation numbers. International Journal of Heat and Mass Transfer, 52(23-24), 5309-5322. (2009)
    [27] M. Elfert, M. Schroll, W. Förster. PIV measurement of secondary flow in a rotating two-pass cooling system with an improved sequencer technique , Journal of Turbomachinery 134.3: 031001. (2012)
    [28] M. A. Habib, A. M. Mobarak, M. A. Sallak, E. A. Abdel Hadi, R. I Affify. Experimental investigation of heat transfer and flow over baffles of different heights. (1994)
    [29] P. Dutta, S. Dutta. Effect of baffle size, perforation, and orientation on internal heat transfer enhancement. International Journal of Heat and Mass Transfer 41.19: 3005-3013. (1998)
    [30] P. Dutta, S. Dutta , J. A. Khan. Internal Heat Transfer Enhancement by Two Perforated Baffles in a Rectangular Channel. ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers. (1998)
    [31] Y. T. Yang, C. Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer 46.5 771-780. (2003)
    [32] P. Dutta, A. Hossain. Internal cooling augmentation in rectangular channel using two inclined baffles. International Journal of Heat and fluid flow 26.2: 223-232. (2005)
    [33] K. H. Ko, N. K. Anand. Use of porous baffles to enhance heat transfer in a rectangular channel. International Journal of Heat and Mass Transfer 46.22: 4191-4199. (2003)
    [34] R. Karwa, B. K. Maheshwari, N. Karwa. Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. International Communications in Heat and Mass Transfer 32.1-2: 275-284. (2005)
    [35] R. Karwa, B. K. Maheshwari. Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches. International Communications in Heat and Mass Transfer 36.3: 264-268. (2009)
    [36] N. Toshikazu, T. Nakamura, Y. Watanabe, K. Handou. Investigation of Air Flow Passing through Louvers. Komatsu Technical Report (2007)
    [37] S.P. Chan. Experimental Study on Influence of Core Flow and Boundary Layer Flow Induced by Perturbators and Channel Cross-Sectional Geometry on Heat Transfer Performance in Heat Exchangers. Ph. D. Thesis. National Tsing-Hua University (2017)
    [38] I. M. Hsieh. Turbulent Flow Measurement and Thermal Fluid Analysis in a Louvered Two-Pass Square Channel with Different Slat Numbers. Master Thesis. National Tsing-Hua University (2018)
    [39] T. M. Liou, C. S. Wang, J. C.Tseng, I. M. Hsieh, C. C. Chen. Influence of slat attack angle and pitch ratio on turbulent hydrothermal characteristics in a louvered two-pass square channel. International Journal of Heat and Mass Transfer, 143, 118527. (2019)
    [40] M. H. I. Baird, G. J. Duncan, J. I. Smith, J. Taylor. Heat transfer in pulsed turbulent flow. Chemical Engineering Science, 21(2), 197-199. (1966)
    [41] L. Guo, X. Chen, Z. Feng, B. Bai. Transient convective heat transfer in a helical coiled tube with pulsatile fully developed turbulent flow. International Journal of Heat and Mass Transfer, 41(19), 2867-2875. (1998)
    [42] A. M. Said , M. A. Habib , M. O. Iqbal. Heat transfer to pulsating turbulent flow in an abrupt pipe expansion. International Journal of Numerical Methods for Heat & Fluid Flow , 13(3), 286-308. (2003)
    [43] M. A. Habib, A. M. Attya, S. A. M. Said, A. I Eid, A. Z. Aly. Heat transfer characteristics and Nusselt number correlation of turbulent pulsating pipe air flows. Heat and mass transfer, 40(3-4), 307-318. (2004)
    [44] E. A. Elshafei, M. S. Mohamed, H. M. ansour, M. Sakr. Experimental study of heat transfer in pulsating turbulent flow in a pipe. International Journal of Heat and Fluid Flow, 29(4), 1029-1038. (2008)
    [45] S.He , J. D. Jackson. An experimental study of pulsating turbulent flow in a pipe. European Journal of Mechanics-B/Fluids 28.2, 309-320. (2009)
    [46] A. E Zohir, Ali. A. Abdel Aziz, M. A. Habib. Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow. Experimental Thermal and Fluid Science 65, 41-5. (2015)
    [47] T. M. Liou , C. C. Chen , Y. Y. Tzeng, T. W. Tasi. Non-Intrusive Measurements of Near-Wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage. International Journal of Heat and Mass Transfer 43(17) 3233-3244. (2000)
    [48] W. L. Fu, L. M. Wright, J. C. Han. Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels with Smooth Walls and 45 Degree Ribbed Walls. Journal of Heat Transfer 128(11) 1130-1141. (2006)
    [49] K. Saha, S. Acharya. Effect of Bend Geometry on Heat Transfer and Pressure Drop in a Two-Pass Coolant Square Channel for a Turbine. Journal of Turbomachinery 135(2). (2013)
    [50] S. Mochizuki, A. Murata, M. Fukunaga. Effects of Rib Arrangements On Pressure Drop and Heat Transfer in a Rib-Roughened Channel with a Sharp 180 Deg Turn. Journal of Turbomachinery 119(3) 610-616. (1997)
    [51] A. Murata, S. Mochizuki. Effect of Rib Orientation and Channel Rotation on Turbulent Heat Transfer in a Two-Pass Square Channel with Sharp 180° Turns Investigated by Using Large Eddy Simulation. International Journal of Heat and Mass Transfer 47(12) 2599-2618. (2004)
    [52] T. M. Liou, S. W. Chang, C. C. Yang. Heat Transfer and Pressure Drop Measurements of Rotating Twin-Pass Parallelogram Ribbed Channel. International Journal of Thermal Sciences 79 206-219. (2014)
    [53] E. A. Sewall, D. K. Tafti. Large Eddy Simulation of Flow and Heat Transfer in the 180‐Deg Bend Region of a Stationary Gas Turbine Blade Ribbed Internal Cooling Duct. Journal of Turbomachinery 128(4) 763-771. (2006)
    [54] J. C. Han, J. S. Park. Developing Heat-Transfer in Rectangular Channels with Rib Turbulators. International Journal of Heat and Mass Transfer 31(1) 183-195. (1988)
    [55] A. P. Rallabandi, H. T. Yang, J. C. Han. Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers. Journal of Heat Transfer 131(7). (2009)
    [56] R. Kiml, S. Mochizuki, A. Murata. Effects of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge. Journal of Heat Transfer 123(4) 675-681. (2001)
    [57] M. Amro, B. Weigand, R. Poser, M. Schnieder. An Experimental Investigation of the Heat Transfer in a Ribbed Triangular Cooling Channel. International Journal of Thermal Sciences 46(5) 491-500. (2007)
    [58] K. H. Ko, N. K. Anand. Use of porous baffles to enhance heat transfer in a rectangular channel. International Journal of Heat and Mass Transfer 46(22) 4191-4199. (2003)
    [59] T. S. Wang, M. K. Chyu. Heat convection in a 180-deg turning duct with different turn configurations. Journal of Thermophysics and Heat Transfer 8.3 595-601. (1994)
    [60] Westerweel, Jerry. Fundamentals of digital particle image velocimetry. Measurement science and technology 8.12: 1379. (1997)
    [61] V. Aga, Experimental investigation of the influence of flow structure on compound angled film cooling performance. (2009)
    [62] S. Y. Son, K. D. Kihm, J. C. Han. PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels with Smooth and 90° Ribbed Walls. International Journal of Heat and Mass Transfer 45(24) 4809-4822. (2002)
    [63] R. D. Keane, R. J. Adrian. Optimization of Particle Image Velocimeters: II. Multiple Pulsed Systems. Measurement Science and Technology 2(10) 963. (1991)
    [64] R. J. Moffat. Describing the uncertainties in experimental results. Experimental thermal and fluid science 3-17.1.1. (1988)
    [65] W. C. Chang. Experimental Studies of 180-Deg Sharp Turn Effect on Turbulence Statistics and Thermal-Fluidic Correlations in a Smooth Square Duct. Master Thesis. National Tsing Hua University. (2018).
    [66] A. Scotti, U. Piomelli. Numerical simulation of pulsating turbulent channel flow. Physics of Fluids 13.5 1367-1384. (2001)

    QR CODE