簡易檢索 / 詳目顯示

研究生: 洪薪婷
Hung, Hsin Ting
論文名稱: 利用表面錯合模式理論探討氧化鐵光電極單原子催化劑的組裝機制
Using Surface Complexation Modeling on Preparation of Single-Atom Catalyst on Hematite Photoelectrodes
指導教授: 王竹方
Wang, Chu Fang
口試委員: 談駿嵩
蔣本基
王清海
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 129
中文關鍵詞: 氧化鐵光催化劑
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面錯合理論在傳統上被用在環境科學領域以模擬和解釋基於熱力學平衡常數通過化學計量反應的微粒表面和汙染物離子之間之相互作用,此研究報告應用表面錯合理論操控在赤鐵礦表面上的鈷單原子助催化劑,穿透式電子顯微鏡圖像證實調整pH值和鈷離子濃度會導致鈷催化劑在赤鐵礦表面的均勻分布或粗大顆粒的簇團,這與模擬結果一致,這是由於鈷吸附或沉澱在赤鐵礦表面,鈷在表面的不同分布情況進一步影響有機染料(羅丹明B)光降解的反應性和光電化學的水氧化反應,此外,當應用表面錯合模型使鈷-磷 (Co-Pi)助催化劑裝飾在赤鐵礦電極上時,發現磷酸根在增強光電化學表現上也扮演著重要作用,這是因為表面的磷酸根可誘導Co-Pi助催化劑變成連續或中孔結構層,導致後者比前者擁有更高的光電流表現,此研究結果表明,應用表面錯合模型不僅可以操控助催化劑在赤鐵礦表面上的分布,且還可以探討表面分布情況與赤鐵礦電極光催化活性的界面現象。


    Surface complexation modeling (SCM) has been wildly applied in the field of environmental science to simulate and explain the interaction between particulate surfaces and pollutant ions via a stoichiometric reaction based on the thermodynamics. We report herein the application of SCM to manipulate the dispersion of cocatalysts on the surface of hematite. In the preliminary trial in a backer system, observations from TEM images confirm that the pH and loaded Co2+ concentrations lead to either homogeneous distribution or coarse clusters of cobalt cocatalysts on hematite surfaces, which is consistent with our SCM simulation. This can be attributed to adsorption or precipitation of cobalt on the hematite surface. Different distribution of surface cobalt cocatalysts further influence the reactivity of photodegradation of organic dyes (RhB) and photoelectrochemical (PEC) water oxidation. Furthermore, when SCM was applied to decorate hematite electrodes with cobalt-phosphate (Co-Pi) cocatalysts, it was found that Pi also plays an important role in the enhanced PEC performance. This is because surface Pi might induce Co-Pi cocatalysts developing into either a continuous or a mesostructured layer, leading to the latter has the photocurrent two folds higher than the former. Our results substantially demonstrate that the application of SCM can not only manipulate the dispersion of surface cocatalyst on hematite surface but also provide an opportunity to explore the interface phenomenon of this distribution and consequential photocatalytic reactivity of hematite electrodes.

    中文摘要 Abstract 謝誌 Contents Table Index Figure Index Chapter 1 Introduction Chapter 2 Literature Review 2.1 Surface Complexation Modeling 2.2 Single-Atom Catalyst 2.3 Water Splitting 2.4 Electrochemistry Impedance Spectroscopy ( EIS ) Chapter 3 Experimental 3.1 Chemical Reagents 3.2 Experimental Instruments 3.2.1 Inductively coupled plasma-Mass Spectroscopy (ICP-MS) 3.2.2 X-Ray Diffraction (XRD) 3.2.3 Scanning electron microscope (SEM) 3.2.4 Transmission electron microscopy (TEM) 3.2.5 Fourier-Transferred Infrared (FT-IR) 3.3 Details of Experimental Methods 3.3.1 MINEQL+ 3.3.2 The cobalt/phosphate adsorbed on hematite nanoparticles 3.3.3 Preparation of photoanodes (Fe-Co & Fe-CoPi) 3.3.4 Photoelectrochemical measurements 3.3.5 Electrochemical impedance spectroscopy Chapter 4 Result and Discussion 4.1 Simulation of Surface Complexation Modeling: Cobalt and Phosphate Adsorption on Hematite Nanoparticles 4.1.1 Cobalt adsorption on hematite 4.1.2 Phosphate adsorption on hematite 4.1.3 Ternary system with Co and Pi adsorption on hematite 4.2 Verification of Surface Complexation Modeling on Hematite Surface Decoration with Cobalt Cocatalysts: A Potential Tool for Preparing Single-Atom Catalysts 4.2.1 The cobalt cocatalyst adsorbed on photocatalyst 4.2.2 Surface cobalt cocatalysts on photocatalytic performance 4.2.3 Impedance spectroscopy of cobalt cocatalysts on photocatalytic 4.3 Application of Surface Complexation Modeling to Fabricate Single-Atom Co-Pi Cocatalyst on the Surface of Hematite Photoanodes 4.3.1 Characterizations of fabricated photoanodes 4.3.2 Characterization of photoelectrochemical activities of Fe-Co photoanodes 4.3.3 Fe-CoPi photoanodes photoelectrochemical characterization Chapter 5 Conclusions and Future Work Reference Appendix

    [1] Lin, J.; Wang, AQ.; Qiao, BT.; Liu, XY.; Yang, XF.; Wang, XD.; Liang, JX.; Li, J.; Liu, JY.; Zhang, T. J. Am. Chem. Soc., 2013, 135,15314–15317.
    [2] Thomas, J.; Saghi, Z.; Gai, P. Top. Catal. 2011, 54, 588
    [3] Yang, X.; Wang, A.; Qiao, B.; Li. J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740.
    [4] Schuth, F. Angew. Chem. Int. Ed. 2014, 53, 8599-8604.
    [5] Wang, TH.; Hsieh, CJ.; Lin, SM.; Wu, DC.; Li, MH.; Teng, SP. Environ. Sci. Technol. 2010, 44, 5142-5147.
    [6] Tiberg, C.; Sjostedt, C.; Persson, I.; Gustafsson, J.P. Geochim. Cosmochim. Acta 2013, 120, 140-157.
    [7] Gunnarsson, M.; Jakobsson, A-M.; Ekberg, S.; Albinsson, Y.; Ahlberg, E. J. Colloid Interf. Sci. 2000, 231, 326-336.
    [8] Schecher, W.D.; McAvoy, D.C. MINEQL+: A chemical equilibrium modeling system, version 4.5 for Windows, User’s manual, v2.00; Environmental Research Software: Hallowell, Maine, 2003.
    [9] Dzombak, D.A.; Morel, F.M.M. Surface complexation modeling: Hydrous Ferric Oxide, Wiley-Interscience, New York, 1990.
    [10] Xi, L.F.; Tran, P.D.; Chiam, S.Y.; Bassi, P.S.; Mak, W.F.; Mulmudi, H.K.; Batabyal, S.K.; Barber, J.; Loo, J.S.C.; Wong, L.H. J. Phys. Chem. C 2012, 116, 13884−13889.
    [11] Suresh, R.; Prabu, R.; Vijayaraj, A.; Giribabu, K.; Stephen, A.; Narayanan, V. Mater. Chem. Phys. 2013, 134, 590-596.
    [12] Almeida, T.P.; Fay, M.W.; Zhu, YQ.; Brown, P.D. J Mater Sci 2012, 47, 5546–5560.
    [13] Barroso, M.; Cowan, A.J.; Pendlebury, S.R.; Gratzel, M.; Klug, D.R.; Durrant, J.R. J. Am. Chem. Soc. 2011, 133, 14868–14871.
    [14] Riha, S.C. Klahr, B.M.; Tyo, E.C.; Seifert, S.; Vajda, S.; Pellin, M.J.; Hamann, T.W.; Martinson, A.B.F. ACS Nano, 2013, 7, 2396–2405.
    [15] Kunan, M.W.; Nocera, D.G. Science, 2008, 321, 1072-1075.
    [16] Zhong, D.K.; Sun, JW.; Inumaru, H.; Gamelin, D.R. J. Am. Chem. Soc. 2009, 131, 6086–6087.
    [17] Barroso, M.; Mesa, C.A.; Pendlebury, S.R.; Cowan, A.J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D.R.; Durrant, J.R. Proc. Natl. Acad. Sci. USA, 2012, 25, 15640–15645.
    [18] McDonald, K.J.; Choi, K.S. Chem. Mater. 2011, 23, 1686–1693.
    [19] Franking, R.; Li, LS.; Lukowski, M.A.; Meng, F.; Tan, YZ.; Hamers, R.J.; Jin, S. Energy Environ. Sci. 2013, 6, 500–512.
    [20] Barron, V.; Torrent, J. J. Colloid Interf. Sci. 1996, 177, 407–410.
    [21] Peacock, C.L.; Sherman, D.M. Geochim. Cosmochim. Acta, 2004, 68, 2623–2637.
    [22] Breeuwsma, A., and Lyklema, J., J. Colloid Interface Sci. 1973, 43, 437-448.
    [23] Penners, N. G. H., and Koopal, L. K., Colloids Surf. 1986, 19, 337-349.
    [24] Hesleitner, P., Babic, D., Kallay, N., and Matijevic, E., Langmuir. 1987, 3, 815-820.
    [25] Fokkink, L. G. J., de Keizer, A., and Lyklema, J., J. Colloid Interface Sci. 1989, 127, 116-131.
    [26] Gibb, A.W. M., and Koopal, L. K., J. Colloid Interface Sci. 1990, 134, 122-138.
    [27] Pivovarov, S., J. Colloid Interface Sci. 1998, 206, 122-130.
    [28] Schudel, M., Behrens, S. H., Holthoff, H., Kretzschmar, R., and Borkovec, M., J. Colloid Interface Sci. 1997, 196, 241-253.
    [29] Cornell, R. M., and Schwertmann, U., “The Iron Oxides: Structure, Properties, Reactions, Occurence and Uses.” Weiheim, New York, Basel, Cambridge, Tokyo VSH, 1996.
    [30] Liang, L. Y., and Morgan, J. J., Aquat. Sci. 1990, 52, 32-55.
    [31] Karasawa, H., Asakura, Y., Sakagami, M., and Uchida, S., J. Nucl. Sci. Technol. 1986, 23, 926-927.
    [32] Ardizzone, S., and Formaro, L., Surf. Technol. 1983, 19, 283-288.
    [33] Kobal, I., Hesleitner, P., and Matijević, E., Colloids Surf. 1988, 33, 167-174.
    [34] Ogrinc, N., Trkov, A., Kobal, I., and Matijević, E., Acta Chim. Slovenica 1994, 41, 417-436.
    [35] Wu, C. L., Yang, M. H., and Lin, C. C., Radiochim. Acta 1983, 33, 57-60.
    [36] Afanasjev, Y. A., Eremin, V. P., and Beslenei, K. G., Russ. J. Phys. Chem. 1982, 56, 1369.
    [37] Todorovi´c, M., Milonji´c, S. K., and Comor, J. J., Sep. Sci. Technol. 1992, 27, 671-679.
    [38] Rose, A. W., and Bianchi-Mosquera, G. C., Econ. Geol. 1993, 88, 1226-1236.
    [39] Fujikawa, Y., and Fukui, M., Radiochim. Acta 1997, 76, 153-162.
    [40] Tamura, H., Katayama, N., and Furuichi, R., J. Colloid Interface Sci. 1997, 195, 192-202.
    [41] Tamura, H., and Furuichi, R., J. Colloid Interface Sci. 1997, 195, 241-249.
    [42] Xie L. and Giammar D. E., Developments in Earth and Environmental Sciences 2007, 7, 349-373.
    [43] Weesner F. J. and Bleam W. F., Journal of Colloid and Interface Science 1998, 205, (2), 380-389.
    [44] Ostergren J. D., Trainor T. P., Bargar J. R., Brown G. E. and Parks G. A., Journal of Colloid and Interface Science 2000, 225(2), 466-482.
    [45] Ostergren J. D., Brown G. E., Parks G. A. and Persson P., Journal of Colloid and Interface Science 2000, 225(2), 483-493.
    [46] Elzinga E. J., Peak D. and Sparks D. L., Geochimica et Cosmochimica Acta 2001, 65(14), 2219-2230.
    [47] Bargar J. R., Brown G. E. and Parks G. A., Geochimica et Cosmochimica Acta 1998, 62(2), 193-207.
    [48] Nelson H., 2012, Ph. D. thesis, Department of Chemistry, Umea University, Umea , Sweden.
    [49] Sheals J., Granström M., Sjöberg S. and Persson P., Journal of Colloid and Interface Science 2003, 262(1), 38-47.
    [50] Pierre, D.; Deng, W.; Flytzani-Stephanopoulos, M. Top. Catal. 2007, 46, 363-373.
    [51] Kwak, J.; Hu, J.; Mei, D.; Yi, C.; Kim, H.; Peden, C.; Allard, L.; Szanyi, J. Science 2009, 325, 1670-1673.
    [52] Moses-DeBusk, M.; Yoon, M.; Allard, L.; Mullins, D.; Wu., Z.; Yang, X.; Veith, G.; Stocks, G.; Narula, C. J. Am. Chem. Soc. 2013, 135, 12634-12645.
    [53] Hackett, S.; Brydson, R.; Gass, M.; Harvey, I.; Newman, A.; Wilson, K.; Lee, A. Angew. Chem., Int. Ed. 2007, 46, 8593-8596.
    [54] Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Angew. Chem., Int. Ed. 2012, 51, 9628-9632.
    [55] Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Angew. Chem., Int. Ed. 2012, 51, 4198-4203.
    [56] Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Nat. Mater. 2012, 11, 49-52.
    [57] Vanharde, R.and Hartog, F. Surf. Sci. 1969, 15, 189-230.
    [58] Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. J. Catal. 2004, 223, 232-235.
    [59] Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647-1650.
    [60] Li, J.; Li,X.; Zhai,H. J.;Wang, L.S. Science 2003, 299, 864-867.
    [61] Yoon,B.;Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J.-M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403-407.
    [62] Campbell, C. T. Nat. Chem. 2012, 4, 597-598.
    [63] Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 405-408.
    [64] Somorjai, G. A.; Park, J. Y. Chem. Soc. Rev. 2008, 37, 2155-2162.
    [65] Crespo-Quesada, M.; Yarulin, A.; Jin, M.; Xia, Y.; Kiwi-Minsker, L. J. Am. Chem. Soc. 2011, 133, 12787-12794.
    [66] Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331-1335.
    [67] Lin, J.; Qiao, B.; Liu, J.; Huang, Y.; Wang, A.; Li, L.; Zhang, W.; Allard, L. F.; Wang, X.; Zhang, T. Angew. Chem., Int. Ed. 2012, 51, 2920-2924.
    [68] Heiz, U.; Sanchez, A.; Abbet, S.; Schneider, W. D. J. Am. Chem. Soc. 1999, 121, 3214-3217.
    [69] Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schl€ogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S. Science 2010, 328, 224-228.
    [70] Qiao, B.; Liu, L.; Zhang, J.; Deng, Y. J. Catal. 2009, 261, 241-244.
    [71] Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Nature 2008, 454, 981-983.
    [72] Kaden, W. E.; Wu, T.; Kunkel, W. A.; Anderson, S. L. Science 2009, 326, 826-829.
    [73] Thomas, J. M.; Raja, R.; Lewis, D. W. Angew. Chem., Int. Ed. 2005, 44, 6456-6482.
    [74] Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634-641.
    [75] Ranocchiari, M.; Lothschütz, C.; Grolimund, D.; van Bokhoven, J. A. Proc. R. Soc. A 2012, 468, 1985-1999.
    [76] Flytzani-Stephanopoulos, M.; Gates, B. C. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545–574.
    [77] Ling Y. C., Wang G. M., Wheeler D. A., Zhang J. Z. and Li Y., Nano Lett., 2011, 11 (5), 2119-2125.
    [78] Grätzel, M. Nature 2001, 414 (6861), 338-344.
    [79] Li, Y. and Zhang, J. Z. Laser Photonics Rev. 2010, 4 (4), 517-528.
    [80] Liu, R.; Lin, Y.; Chou, L. Y.; Sheehan, S. W.; He, W.; Zhang, F.; Hou, H. J. M. and Wang, D. Angew. Chem., Int. Ed. 2011, 50, 499-502.
    [81] Sivula, K.; Le Formal, F.; Grätzel, M. Chem. Mater. 2009, 21 (13), 2862-2867.
    [82] Lin, Y.; Zhou, S.; Liu, X. H.; Sheehan, S. W.; Wang, D. J. Am. Chem. Soc. 2009, 131, 2772-2773.
    [83] Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2010, 10 (3), 1088-1092.
    [84] Hensel, J.; Wang, G.; Li, Y.; Zhang, J. Z. Nano Lett. 2010, 10, 478-483.
    [85] Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2009, 9 (6), 2331-2336.
    [86] Brillet, J.; Grätzel, M.; Sivula, K. Nano Lett. 2010, 10 (10), 4155-4160.
    [87] Cesar, I.; Kay, A.; Martinez, J. A. G.; Gratzel, M. J. Am. Chem. Soc. 2006, 128 (14), 4582-4583.
    [88] Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128 (49), 15714-15721.
    [89] Frites, M.; Shaban, Y. A.; Khan, S. U. M. Int. J. Hydrogen Energy 2010, 35 (10), 4944-4948.
    [90] Gaudon, M.; Pailhe, N.; Majimel, J.; Wattiaux, A.; Abel, J.; Demourgues, A. J. Solid State Chem. 2010, 183 (9), 2101-2109.
    [91] Grätzel, M.; Kiwi, J.; Morrison, C. L.; Davidson, R. S.; Tseung, A. C. C. J. Chem. Soc., Faraday Trans. 1 1985, 81, 1883-1890.
    [92] Hahn, N. T.; Mullins, C. B. Chem. Mater. 2010, 22 (23), 6474-6482.
    [93] Ingler, W. B.; Khan, S. U. M. Thin Solid Films 2004, 461 (2), 301-308.
    [94] Ingler, W. B.; Khan, S. U. M. Electrochem. Solid-State Lett. 2006, 9 (4), G144-G146.
    [95] Kumari, S.; Singh, A. P.; Sonal; Deva, D.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Int. J. Hydrogen Energy 2010, 35 (9), 3985-3990.
    [96] Le Formal, F.; Grätzel, M.; Sivula, K. Adv. Funct. Mater. 2010, 20 (7), 1099-1107.
    [97] Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132 (21), 7436-7444.
    [98] Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem., Int. Ed. 2010, 49 (36), 6405-6408.
    [99] Wang, H. L.; Turner, J. A. J. Electrochem. Soc. 2010, 157 (11), F173-F178.
    [100] Lin, Y.; S., Z.; Sheehan, S. W.; Wang, D. J. Am. Chem. Soc. 2011, 133, 2398-2401.
    [101] Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Gr€atzel, M. J. Phys. Chem. C 2009, 113 (2), 772-782.
    [102] Cherepy, N. J.; Liston, D. B.; Lovejoy, J. A.; Deng, H. M.; Zhang, J. Z. J. Phys. Chem. B 1998, 102 (5), 770-776.
    [103] Dareedwards, M. P.;Goodenough, J. B.;Hamnett, A.; Trevellick, P. R. J. Chem. Soc., Faraday Trans. 1 1983, 79, 2027-2041.
    [104] Sivula K, Formal F. L. and Grätzel M.; ChemSusChem 2011, 4, 432-449.
    [105] Hernndez-Alonso M. D., Fresno F., Suarez S., J. M. Coronado, Energy Environ. Sci. 2009, 2, 1231-1257.
    [106] Maeda K., Domen K., J. Phys. Chem. Lett. 2010, 1, 2655-2661.
    [107] Esswein A. J., Nocera D. G., Chem. Rev. 2007, 107, 4022-4047.
    [108] Boddy P. J., J. Electrochem. Soc. 1968, 115, 199-203.
    [109] Fujishima A., Honda K., Nature 1972, 238, 37-38.
    [110] Szklarczyk M., Bockris J. O., J. Phys. Chem. 1984, 88, 5241-5245.
    [111] Woodhouse M., Parkinson B. A., Chem. Soc., Rev. 2009, 38, 197-210.
    [112] Walsh A., Wei S. H., Yan Y., Al-Jassim M. M., J. A. Turner, Phys. Rev. B 2007, 76, 165119.
    [113] Greeley J., Jaramillo T. F., Bonde J., Chorkendorff I. B., Norskov J. K., Nat. Mater. 2006, 5, 909-913.
    [114] Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253-278.
    [115] Osterloh, F. E. Chem. Mater. 2008, 20, 35-54.
    [116] Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795-2806.
    [117] Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.; Tang, J.; Grätzel, M.; Klug, D.; Durrant, J. R. Chem. Commun. 2011, 47, 716-719.
    [118] Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D. R. Energy Environ. Sci. 2011, 4, 1759-1764.
    [119] Kleiman-Shwarsctein, A.; Hu, Y.-S.; Stucky, G. D.; McFarland, E. W. Electrochem. Commun. 2009, 11, 1150-1153.
    [120] Elizarova, G. L.; Zhidomirov, G. M.; Parmon, V. N. Catal. Today 2000, 58, 71-88.
    [121] Frei, H.; Jiao, F. Angew. Chem., Int. Ed. 2009, 48, 1841-1844.
    [122] Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem., Int. Ed. 2011, 50, 7238-7266.
    [123] Surendranath, Y.; Dincă, M.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 2615-2620.
    [124] Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chem. Soc. Rev. 2009, 38, 109-114.
    [125] Surendranath, Y.; Kanan, M. W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501-16509.
    [126] Kanan, M. W.; Yano, J.; Surendranath, Y.; Dincă, M.; Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 13692-13701.
    [127] McAlpin, J. G.; Surendranath, Y.; Dincă, M.; Stich, T. A.; Stoian, S. A.; Casey, W. H.; Nocera, D. G.; Britt, R. D. J. Am. Chem. Soc. 2010, 132, 6882-6883.
    [128] Risch, M.; Khare, V.; Zaharieva, I.; Gerencser, L.; Chernev, P.; Dau, H. J. Am. Chem. Soc. 2009, 131, 6936-6937.
    [129] Symes, M. D.; Surendranath, Y.; Lutterman, D. A.; Nocera, D. G. J. Am. Chem. Soc. 2011, 133, 5174-5177.
    [130] Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Energy Environ. Sci. 2011, 4, 499-504.
    [131] Steinmiller, E. M. P.; Choi, K. S. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20633-20636.
    [132] Seabold, J. A.; Choi, K.-S. Chem. Mater. 2011, 23, 1105-1112.
    [133] Gomes W.P., Vanmaekelbergh D., Electrochimico Acta 1996, 41, 967-973.
    [134] Gomes W. P. and Cardon F., Progress in Surface Science 1982, 12, 155-215.
    [135] H. H. Goossens: Ph.D. Thesis, University of Gent, 1991.
    [136] Van Meirhaeghe R. L., Dutoit E. C., Cardon F. and Gomes W. P., Electrochim. Acta 1975, 20, 995-999.
    [137] Lam R. U. E. ‘t, Schoonman J. and Blasse G., Ber. Bunsenges. Phys. Chem. 1981, 85, 592-597.
    [138] McCann J. F. and Badwal S. P. S., J. Electrochem. Sot. 1982, 129, 551-559.
    [139] Fransen F., Madou M. J., Laflbre W. H., Cardon F. and Gomes W. P., J. Phys. D: Appl. Phys. 1983, 16, 879-888.
    [140] Goossens A. and Schoonman J., J. Electrochem. Sot. 1992, 139, 893-900.
    [141] Oskam G., Vanmaekelbergh D. and Kelly J. J., J. Electroanal. Chem. 1991, 315, 65-85.
    [142] Dutoit E. C., Meirhaeghe R. L. Van, Cardon F. and Gomes W. P., Ber. Bunsenges. Phys. Chem. 1975, 79, 1206-1213.
    [143] Nogami G., J. Electrochem. Sot. 1982, 129, 2219-2223.
    [144] Zhao W. R., Gu J. L., Zhang L. X., Chen H. G., Shi L. J., J. Am. Chem. Soc. 2005, 127, 8916-8917.
    [145] Arai Y. and Sparks D. L., Journal of Colloid and Interface Science 2001, 241, 317-326.
    [146] Tejedor-Tejedor M. I. and Anderson M. A., Langmuir 1990 (6) 602-611.
    [147] Fu L., Yu H., Zhang C., Shao Z. and Yi B., Electrochimica Acta 2014, 136 363-369.
    [148] Ardizzon, S.; Spinolo, G.; Trasatti, S., Electrochim. Acta 1995, 40, 2683-2686.
    [149] Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A. Chem. Mater. 2001, 13 ( 2) 233- 235.
    [150] Klahr B., Gimenez S., Fabregat-Santiago F., Hamann T. and Bisquert J., J. Am. Chem. Soc. 2012, 134, 4294-4302.
    [151] Zhou X. M., Yang H. C., Wang C. X., Mao X. B., Wang Y. S., Yang Y. L., Liu G., J. Phys. Chem. C 2010, 114, 17051–17061.
    [152] Wu K. Q., Xie Y. D., Zhao J. C., Hidaka H. S., J. Molecular Catalysis A: Chem. 1999, 144, 77–84.
    [153] Klahr B., Gimenez S., Fabregat-Santiago F., Bisquert J. and Hamann T. W., J. Am. Chem. Soc. 2012, 134, 16693−16700.
    [154] Wang T. H., Huang M. C., Liu F. W., Hsieh Y. K., Chang W. S., Lin J. C., Wang C. F., RSC Advances, 2014, 4, 4463-4471.
    [155] Zhao H., Fu W., Yang H., Xu Y., Zhao W., Zhang Y., Chen H., Jing Q., Qi X., Cao J., Zhou X. and Li Y., Appl. Surf. Sci. 2011, 257 8778-8783.
    [156] Sivula K., Zboril R., Formal F. Le, Robert R., Weidenkaff A., Tucek J., Frydrych J., Gratzel M., J. Am. Chem. Soc. 2010, 132, 7436-7444.
    [157] Hong, Y. R.; Liu, Z. L.; Al-Bukhari, S. F. B. S. A.; Lee, C. J. J.; Yung, D. L.; Chi, D. Z.; Hor., T. S. A. Chem. Commun. 2011, 47, 10653-10655.
    [158] Qin, D. D.; Tao, C. L.; In, S. I.; Yang, Z. Y.; Mallouk, T. E.; Bao, N. Z.; Grimes, C. A. Energy Fuels 2011, 25, 5257-5263.
    [159] Wang T. H., Huang M. C., Hsieh Y. K., Chang W. S., Lin J. C., Lee C. H. and Wang C. F., ACS Appl. Mater. Interfaces 2013, 5, 7937−7949.
    [160] Hankin, A.; Alexander, J.C.; Kelsall, G.H., Phys. Chem. Chem. Phys. 2014, 16, 16176-16186.
    [161] Kelly, J.J. and Memming, R., J. Electrochem. Soc. 1982, 129, 730-738.
    [162] Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; MacFarland, E. W., J. Phys. Chem. C 2008, 112, 15900-15907.
    [163] Shimizu K., Lasia A. and Boily J.-F., Langmuir, 2012, 28, 7914–7920.
    [164] Parks G.A., Chem. Rev., 1965, 65(2), 177-198.
    [165] Jayaweera P., Hettiarachchi S., Ocken H., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 85(1), 19-27.
    [166] Zhou Y., Zhang Y., Li G., Wu Y. and Jiang T., Powder Technology, 2015, 271, 155-166.
    [167] Liao PK., Keith J.A. and Cater E.A., J. Am. Chem. Soc. 2012, 134, 13296-13309.
    [168] Wang, TH.; Chiang, CL.; Li, PC.; Hsieh, KY.; Wang, CF., Chem. Eng. J. 2014, 244, 243-251.
    [169] Cuglietta M., Chaudhary K. L., Ge S. and Kesler O., Powder Technology, 2013, 237, 76-86.
    [170] Carroll G. M., Zhong D. K. and Gamelin D. R., Energy Environ. Sci., 2015, 8, 577-584.
    [171] Zhong, D.K.; Gamelin, D.R., J Am Chem Soc 2010, 132, 4202-4207.
    [172] Kleiman-Shwarsctein, A.; Huda, M. N.; Walsh, A.; Yan, Y.; Stucky, G. D.; Hu, Y. S.; Al-Jassim, M. K.; MacFarland, E. W. Chem. Mater. 2010, 22, 510–517.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE