簡易檢索 / 詳目顯示

研究生: 陳柏蓉
Chen, Bor-Rong
論文名稱: A Synchrotron Radiation Photoemission Study on Clean GaAs(111)A Surface and Gd2O3/GaAs(111)A Interface
以同步輻射光電子發射能譜研究砷化鎵(111)A表面與氧化釓/砷化鎵(111)A介面之電子結構
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, J. Raynien
口試委員: 郭瑞年
Kwo, J. Raynien
皮敦文
Pi, Tun-Wen
洪銘輝
Hong, Minghwei
郭瑞年
Kwo, J. Raynien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 103
中文關鍵詞: 砷化鎵氧化釓分子束磊晶同步輻射光電子能譜介面
外文關鍵詞: GaAs, Gd2O3, Molecular Beam Epitaxy (MBE), Synchrotron Radiation Photoemission (SRPRS), Interface
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    This work presents the in-situ high energy electron diffraction (RHEED), low energy electron diffraction (LEED) and photoemission spectroscopy (PES) studies for the structural and interfacial chemical characterization of molecular beam epitaxy (MBE)-grown fresh n-GaAs(111)A-2x2 surface and MBE-grown 3ML Gd2O3/GaAs(111)A-2x2 interface. The LEED pattern shows that the GaAs(111)A-2x2 surface follows the “Ga vacancy-buckling model.” Surface As 3d and Ga 3d core-level binding energy shifts have been resolved by in-situ synchrotron radiation photoemission (SRPES) from the GaAs(111)A-2x2 surface. The core-level shifts are -231 meV and +282 meV for As and Ga, in agreement with the vacancy-buckling model. On the other hand, the chemical bonding for the Gd2O3/GaAs(111)A-2x2 interface is also resolved by SRPES. The interface is consisted of Ga-O (Ga1+, +771eV), As-O (As1+, +522eV) bonding, and a large amount of unreacted surface atoms. The Ga-O bond will induce excess negative charge on the nearby As atom and create a As 3d surface core-level shift at -635meV.


    Table of Content 1 Chapter 1 Introduction 1 1.1. Advanced High κ Gate Dielectrics for III-V Based Semiconductors 1 1.2. Motivation 5 1.3. Objective of the Research 8 Chapter 2 Literature Review 9 2.1. GaAs(111)A Surface Properties 9 2.1.1. Surface Relaxation and Reconstruction 9 2.1.2. GaAs (111) Surfaces and Their Reconstructions 11 2.1.3. GaAs (111)A-2x2 Reconstructed Surface Structure 12 2.1.4. Charge compensation and charge transfer on GaAs(111)A surface 16 2.2. Photoemission Study of GaAs(111)A surface 19 2.2.1. Photoemission Study of Clean GaAs(111)A surface 19 2.2.2. Photoemission Study of Chemical Processes on GaAs(111)A Surface 20 2.3. The epitaxial structure of Gd2O3 on Si and GaAs surfaces 21 1.3.1. The Structure of Gd2O3 21 1.3.2. Epitaxial Growth of Gd2O3 on Si 22 Chapter 3 Instrument and Experimental Process 24 3.1. Instrument 24 3.1.1. Molecular Beam Epitaxy (MBE) 24 3.1.2. Photoemission Spectroscopy (PES) 27 3.1.3. Reflection High Energy Electron Diffraction (RHEED) 35 3.1.4. Low Energy Electron Diffraction (LEED) 37 3.2. Experimental Process 39 3.2.1. Sample Growth 39 3.2.2. Analytical Process 43 3.3. Challenges Encountered in SRPES Measurement 51 3.3.1. Sample Charging 51 3.3.2. Photon Induced Oxidation 54 Chapter 4 Results and Discussion -GaAs(111)A-2x2 Clean Surface 56 4.1. RHEED Analysis 56 4.2. LEED Analysis 57 4.3. In-situ XPS Analysis 61 4.3.1. Survey Spectrum 61 4.3.2. As 2p and Ga 2p Core Level Spectra 62 4.3.3. As 3d and Ga 3d Core Level Spectra 64 4.3.4. Valence Band Spectra Analysis 64 4.4. SRPES Analysis 66 4.4.1. Survey Spectrum 66 4.4.2. As 3d and Ga 3d Core Level Spectra 67 4.4.3. Valence Band Analysis 71 5.1. Comparison with Previous SRPES Results on GaAs(111)A-2x2 76 6.1. Deconvolution of Photoemission Spectrum 79 6.1.1. Principle of the Deconvolution Process 79 6.1.2. Chemical Environment of GaAs(111)A Surface 81 6.1.3. Deconvolution of As 3d and Ga 3d Spectra 83 Chapter 5 Results and Discussion: Gd2O3/GaAs(111)A 87 4.1. RHEED Analysis 87 4.2. In-situ XPS Analysis 88 4.2.1. Survey Spectrum 88 4.2.2. As 2p and Ga 2p Core Level Spectra 90 4.2.3. As 3d and Ga 3d Core Level Spectra 91 4.3. Synchrotron Radiation Photoemission Analysis 92 4.3.1. Survey Spectrum 92 4.3.2. As 3d and Ga 3d Core Level Spectra 93 4.3.3. Valence Band Spectra 94 4.4. Deconvolution of Photoemission Spectrum 98 Chapter 6 Conclusion 103

    Reference

    Adachi, S. (2005). Properties of Group-IV, III-V and II-VI Semiconductors. Chichester, England: John Wiley & Sons.

    Adachi, S. (2009). Properties of Semiconductor Alloys : group-IV, III-V and II-VI semiconductors. Chichester, U.K.: Wiley.

    Berkovits, V. L., Ulin, V. P., Tereshchenko, O. E., Paget, D., Rowe, A. C. H., Chiaradia, P., et al. (2011). Chemistry of wet treatment of GaAs(111)B and GaAs(111)A in hydrazine-sulfide Solutions. Journal of the Electrochemical Society, 158(3), D127-D135.

    Biegelsen, D. K., Bringans, R. D., Northrup, J. E., & Swartz, L. E. (1990). GaAs-Surfaces Observed by Scanning Tunneling Microscopy. 20th International Conference on the Physics of Semiconductors, Vols 1-3, 199-206.

    Bolliger, B., Erbudak, M., Hong, M., Kwo, J., Kortan, A. R., & Mannaerts, J. P. (2000). Structure of epitaxial Gd2O3 films and their registry on GaAs(100) substrates. Surface and Interface Analysis, 30(1), 514-517.

    Campbell, J. P., & Lenahan, P. M. (2002). Density of states of Pb1 : Si/SiO2 interface trap centers. Applied Physics Letters, 80(11), 1945-1947.

    Chang, Y. C., Merckling, C., Penaud, J., Lu, C. Y., Wang, W. E., Dekoster, J., et al. (2010). Effective reduction of interfacial traps in Al¬2O3/GaAs (001) gate stacks using surface engineering and thermal annealing. Applied Physics Letters, 97(11)

    Chiang, T. C., Knapp, J. A., Aono, M., & Eastman, D. E. (1980). Angle-Resolved Photoemission, Valence-Band Dispersions E(k), and Electron and Hole Lifetimes for GaAs. Physical Review B, 21(8), 3513-3522.

    Corkill, J. L., & Chelikowsky, J. R. (1994). Theoretical-study of Cl adsorption on the GaAs(110) Surface. Physical Review B, 50(16), 11924-11931.

    Hanic, F., Hartmanova, M., Knab, G. G., Urusovskaya, A. A., & Bagdasarov, K. S. (1984). Real structure of undoped Y2O3 single-crystals. Acta Crystallographica Section B-Structural Science, 40(Apr), 76-82

    Hesse, R., Streubel, P., & Szargan, R. (2007). Product or sum: comparative tests of Voigt, and product or sum of Gaussian and Lorentzian functions in the fitting of synthetic Voigt-based X-ray photoelectron spectra. Surface and Interface Analysis, 39(5), 381-391.

    Hong, M., Kwo, J., Kortan, A. R., Mannaerts, J. P., & Sergent, A. M. (1999). Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation. Science, 283(5409), 1897-1900.

    Hong, M., Kwo, J., Chu, S. N. G., Mannaerts, J. P., Kortan, A. R., Ng, H. M., et al. (2002). Single-crystal GaN/Gd2O3/GaN heterostructure. Journal of Vacuum Science & Technology B, 20(3), 1274-1277

    Hsu, C. H., Chang, W. H., Lee, C. H., Chang, Y. C., Chang, P., Huang, M. L., et al. (2009). Nanometer-thick single-crystal hexagonal Gd2O3 on GaN for advanced complementary metal-oxide-semiconductor technology. Advanced Materials, 21(48), 4970

    Hufner, S. (1996). Photoelectron Spectroscopy : principles and applications (2nd ed.). Berlin ; New York: Springer

    Jacobi, K., Platen, J., & Setzer, C. (2000). Structure and surface core-level shifts of GaAs surfaces prepared by molecular-beam epitaxy. Physica Status Solidi B-Basic Research, 218(2), 329-364.

    Katnani, A. D., & Margaritondo, G. (1983). Microscopic study of semiconductor heterojunctions: photoemission measurement of the valance-band discontinuity and of the potential barriers. Physical Review B, 28(4), 1944-1956.

    Kortan, A. R., Hong, M., Kwo, J., Mannaerts, J. P., & Kopylov, N. (1999). Structure of epitaxial Gd2O3 films grown on GaAs(100). Physical Review B, 60(15), 10913-10918.

    Kwo, J., Hong, M., Kortan, A. R., Queeney, K. L., Chabal, Y. J., Opila, R. L., et al. (2001). Properties of high kappa gate dielectrics Gd2O3 and Y2O3 for Si. Journal of Applied Physics, 89(7), 3920-3927.

    Kwo, J., Hong, M., Busch, B., Muller, D. A., Chabal, Y. J., Kortan, A. R., et al. (2003). Advances in high κ gate dielectrics for Si and III-V semiconductors. Journal of Crystal Growth, 251(1-4), 645-650.

    Kwo, J., Murphy, D. W., Hong, M., Opila, R. L., Mannaerts, J. P., Sergent, A. M., et al. (1999). Passivation of GaAs using (Ga¬2O3)(1-x)(Gd2O3)x, 0 <x <1.0 films. Applied Physics Letters, 75(8), 1116-1118.

    Lenahan, P. M., & Conley, J. F. (1998). What can electron paramagnetic resonance tell us about the Si/SiO2 system? Journal of Vacuum Science & Technology B, 16(4), 2134-2153.

    Lin, T. D., Hang, M. C., Hsu, C. H., Kwo, J., & Hong, M. (2007). MBE grown high-quality Gd2O3/Si(111) hetero-structure. Journal of Crystal Growth, 301, 386-389.

    Liu, Y. Q., Xu, M., Heo, J., Ye, P. D. D., & Gordon, R. G. (2010). Heteroepitaxy of single-crystal LaLuO3 on GaAs(111)A by atomic layer deposition. Applied Physics Letters, 97(16)

    Lu, Z. H., Chatenoud, F., Dion, M. M., Graham, M. J., Ruda, H. E., Koutzarov, I., et al. (1995). Passivation of GaAs(111)A surface by Cl termination. Applied Physics Letters, 67(5), 670-672.

    Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., & Timp, G. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature, 399 (6738), 758-761.

    Martienssen, W., & Warlimont, H. (2005). Springer Handbook of Condensed Matter and Materials Data. Heidelberg ; New York: Springer.

    Norton, D. P. (2004). Synthesis and properties of epitaxial electronic oxide thin-film materials. Materials Science & Engineering R-Reports, 43(5-6), 139-247.

    Ohtake, A., Kocan, P., Seino, K., Schmidt, W. G., & Koguchi, N. (2004). Ga-rich limit of surface reconstructions on GaAs(001): Atomic structure of the (4 x 6) phase. Physical Review Letters, 93(26), -

    Ohtake, A. (2008). Surface reconstructions on GaAs(001). Surface Science Reports, 63(7), 295-327.

    Pashley, M. D. (1989). Electron counting model and its application to island Structures on molecular-beam epitaxy Grown GaAs(001) and ZnSe(001). Physical Review B, 40(15), 10481-10487.

    Riffe, D. M., Wertheim, G. K., & Citrin, P. H. (1991). Enhanced vibrational broadening of core-level photoemission from the surface of Na(110). Physical Review Letters, 67(1), 116-119

    Robertson, J. (2004). High dielectric constant oxides. European Physical Journal-Applied Physics, 28(3), 265-291.

    Spicer, W. E., Newman, N., Spindt, C. J., Lilientalweber, Z., & Weber, E. R. (1990). Pinning and Fermi level movement at GaAs surfaces and interfaces. Journal of Vacuum Science & Technology A, 8(3), 2084-2089.

    Stepniak, F., Rioux, D., & Weaver, J. H. (1994). Prelude to etching - the surface interaction of Chlorine on GaAs(110). Physical Review B, 50(3), 1929-1933.

    Theis, W., & Horn, K. (1993). Temperature-dependent line broadening in core-level photoemission spectra from aluminum. Physical Review B, 47(23), 16060-16063.

    Tong, S. Y., Xu, G., & Mei, W. N. (1984). Vacancy-buckling model for the (2x2) GaAs(111) Surface. Physical Review Letters, 52(19), 1693-1696

    Traub, M. C., Biteen, J. S., Michalak, D. J., Webb, L. J., Brunschwig, B. S., & Lewis, N. S. (2006). High-resolution X-ray photoelectron spectroscopy of chlorine-terminated GaAs(111)A surfaces. Journal of Physical Chemistry B, 110(32), 15641-15644.

    Vickerman, J. C., & Gilmore, I. S. (2009). Surface Analysis : the principal techniques (2nd ed.). Chichester, U.K.: Wiley.

    Wang, J. X., Laha, A., Fissel, A., Schwendt, D., Dargis, R., Watahiki, T., et al. (2009). Crystal structure and strain state of molecular beam epitaxial grown Gd2O3 on Si(111) substrates: a diffraction study. Semiconductor Science and Technology, 24(4)

    Ye, P. D., Xu, M., Wu, Y. Q., Koybasi, O., & Shen, T. (2009). Metal-oxide-semiconductor field-effect transistors on GaAs (111)A surface with atomic-layer-deposited Al2O3 as gate dielectrics. Applied Physics Letters, 94(21).

    Zhang, S. B., & Zunger, A. (1996). Method of linear combination of structural motifs for surface and step energy calculations: application to GaAs(001). Physical Review B, 53(3), 1343-1356.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE