研究生: |
葉昭輝 Yeh, Chao-Hui |
---|---|
論文名稱: |
新穎石墨烯電子元件: 由磊晶成長技術至高速電晶體應用 Graphenetronics: from Growth to High-Speed Transistors |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
李佩雯
Li, Pei-Wen 徐碩鴻 Hsu, Shuo-Hung 邱博文 Chiu, Po-Wen 徐永珍 Hsu, Yung-Jane 李奎毅 Lee, Kuei-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 158 |
中文關鍵詞: | 石墨烯 、高速電晶體 、微波放大器 、頻率混波器 、低雜訊放大器 、軟性電子元件 、銅互聯技術 、電子迴旋共振化學氣象沉積石墨烯 、低溫成長 、倍頻器 |
外文關鍵詞: | graphene, high speed transistor, radio frequency transistor, frequency mixer, low noise amplifier, flexible electronics, interconnect, ECR-CVD graphene, low temperature, frequency doubler |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2004-2005年左右,"石墨烯"開啟了嶄新的研究大門,這個名詞引起了全球各個研究機構的關注,儼然形成一股研究熱潮,此後,數以千計的的文獻和研究相繼發表在國際知名期刊上。
石墨烯以單原子碳層構成蜂窩狀晶格的二維材料,引發了眾多新穎研究的可能性;尤其它自身的物理特性與特殊的能帶結構,於相對論物理學上探索所有具足輕重的引響,更有機會應用在下一世代的電子產品。然而早在一開始,基於Mermin-Wagner 所提出之理論,得知在熱力學中,室溫下二維晶體結構是極其不穩定地,被認為是不可能單獨存在的事情;但自從A. K. Geim 和K. S. Novoselov 等人於曼徹斯特大學研究團隊中,想出一個在室溫下分離出單元子碳層並轉印在二氧化矽基板上,此方法為:以機械剝離法將高定向熱裂解石墨(HOPG)層層分離,而用的就是大家耳熟能詳的"Scotch tape",這樣如此簡單的膠帶材料,不但推翻了這根深柢固的想法,也是第一個成功製備石墨烯的實際例子,更為他們贏得了諾貝爾獎此桂冠。也因此,學術界積極開啟了一扇對二維材料研究的大門。
石墨烯具備眾多特性優點,在電學特性上,室溫下的載子電流遷移率達到20,000 cm^2/V.s和長程彈道傳輸;光學特性上,在可見光範圍內的光吸收率只有2.3%,為一個高度透明導電材料;且具有42 Nm^-1的機械特性以及Young's modulus 為 1.0TPa 的斷裂強度,眾合以上特性,石墨烯成為目前為止難得一見的可貴材料。
本論文重點針對以石墨烯為基礎所開發之多種電子元件應用,包含石墨烯基礎成長,石墨烯電晶體、利用互聯技術結合石墨烯和銅導線使其積體化與石墨烯軟性高頻電子元件。本論文分成三個主題,第一個主題包含第一、二章,講解了石墨烯的晶體結構、能帶結構、電學特性和製備等;第二個主題包含第三、四章,將石墨烯以低溫電子迴旋共振化學氣象沉積法直接成長於積體化的銅導線上,在奈密尺度的微縮下,依舊能保有優異的電流程載密度,更重要的是有效降低其操作阻抗,使未來元件朝奈米尺度不斷微縮的應用上,提供更穩定的可靠度;第三個主題包含第五、六、七章,首先介紹微波元件的基礎理論以及重要方程式之推導,接著深入解析石墨烯製備之軟性高頻電子元件製程應用,最重要的是利用本實驗室研發之自我對準設計,使得石墨烯電晶體得以在極高的兆赫頻率下操作,並進一步完成積體化之高頻接收器(包含低雜訊放大器、混波器)與倍頻器,最後進行元件分析。
末節,對整個論文著作進行回顧,在未來我們對石墨烯等二維新穎材料持續寄予厚望,希望有朝一日為下一世代電子產品開創另一個高峰。
The modern era of graphene“gold-rush”started around 2004–2005, when it became possible to fabricate samples with the toddler’s best friend – the Scotch tape. Since then, the publication trends in this area have been nearly exponential- with tens of thousands of publications just in
the past few years.
Graphene, an isolated mono-atomic carbon layer conformed into two-dimensional honeycomb lattice building blocks, has triggered off numerous novel research possibilities, due to
its intriguing physics and as an emerging paradigm for relativistic condensed matter physics as well as showing great promise for its application in next generation electronics. Before A. K. Geim and K. S. Novoselov et al. envisioned a plausible method to isolate a single atomic
carbon layer on SiO2; based on the Mermin-Wagner theorem, two-dimensional crystals were predicted as thermodynamically unstable formations and were thought of as non-existing in ambient environment that had so far been known only as an integral part of larger three-dimensional
systems. The first successful example of monolayer graphene was achieved by using mechanical cleavage of highly oriented pyrolytic graphite (HOPG) [1] thus making an unprecedented accomplishment in 2-D material science to this day.
The door opened by this first isolation of a 2-D crystal has opened countless doors for previously unknown applications. For instance, graphene has a host of characteristics that show great promise for the development of post silicon electronics [1–4], including a large roomtemperature carrier mobility [5] (20,000 cm^2/V.s) and long-range ballistic transport [6]. In addition to its electrical properties, graphene is also an highly transparent material with an absorption of 2.3 % within visible light range [7]. Its thermal conductivity is measured to be 5,000 W mK^-1 for a monolayer graphene at room temperature [8]. The intrinsic mechanical properties of free-standing monolayer graphene have been examined to be a breaking strength of 42 N m^-1 and a Young's modulus of 1.0 TPa, indicating that it is one of the strongest materials ever measured [9].
This thesis focuses on the various electrical applications of graphene-based devices, integrated with graphite/metal bishell interconnects and graphene-FET applied on analogue microwave circuits. Besides, the fundamental physics of graphene and an innovative strategy for high quality CVD-graphene synthesis that are introduced at the beginning not only lead us to a sufficient understanding in material science but also introduce the state-of-the-art of graphenetronics. This thesis content is categorized in to three parts and organized as follows. The first part presents the fundamental physics of graphene, graphene synthesis by chemical vapor deposition (CVD) and electrical calibration, addressing its emerging application in large scale in flexible electronics. Chapter 1 starts with the fundamentals of graphene, including the crystal
structures as well as its energy band structure. Subsequently, we present an explanation and simplified mechanism of the Raman scattering, which is an important tool to examine the quality of graphene. We introduce the basic knowledge of Raman scattering and the phonon dispersion relation of graphene. The transport properties such as electric field-effect, minimum conductivity and scattering mechanism within graphene will also be explained briefly. Chapter 2 presents graphene growth mechanism and electrical transport analysis in graphene-based FETs. In brief, we show a new facile growth process to improve graphene quality by using CVD technology. In order to examine isolated graphene, the transfer technique and FET fabrication process are represented in following sections. To extract field effect mobility, Drude model is employed to describe the electrical behavior of graphene devices.
Starting from the second part, we show a novel interconnect technique: metal/graphite conformal bi-shell booster via plasma-assisted technology to synthesize well-controlled graphene sheets. Chapter 3 starts with a introduction of electron cyclotron resonance (ECR) chemical
vapor deposition (CVD) of graphene and Chapter 4 presents the fabrication and characterizations of novel electrical interconnect test lines made of Cu/Graphite bi-shell composite with the graphite cap layer grown by ECR-CVD. The graphite layer can boost the composite structure
current-carrying capacity to 10^8 A/cm^2, more than an order of magnitude higher than that of bare metal lines, further reducing resistivity of fine test lines by 20 %. Raman measurements reveal that physical breakdown occurs at 680 – 720 ◦C. Modeling the current vs: voltage curves up to breakdown shows that the maximum current density of the composites is limited by self-heating of the graphite, suggesting the strong roles of phonon scattering at high fields and highlighting the significance of metal counterpart for enhanced thermal dissipation.
The third, and final, part shows that state-of-the-art graphene-based microwave transistors can be implemented on diverse substrates, including both flexible PET and rigid AlN substrates,thus further assuring the feasibility of advanced applications in high-speed analogue circuits.
These results indicate that self-aligned graphene FETs can provide remarkably improved deviceperformance and stability for a range of applications in flexible electronics. Chapter 5 starts with fundamental concepts in microwave transistors, including the evolutionary history of microwave transistors and a well-understood two-port networks representation. In Chapter 6, the purpose shows the novel fabrication process for high-performance CVD graphene FETs with self-aligned drain/source contacts have been presented and implemented on flexible PET substrates. It is very promising to apply this new strategy onto flexible high-speed electronics, especially for new generation wireless communication systems. In our process, an Al gate was directly defined on graphene by e-beam lithography, followed by pure O2 exposure, forming
a native oxide layer around the Al wire. We also characterize other device properties, such as charge neutrally point shifting, current saturation, RF properties, device performance in diverse bending states, and further applications in microwave integrated circuits such as low noise amplifier, frequency mixer and doubler.
As a closure, Chapter 7, shows state-of-the-art of graphenetronics built on rigid substrates. In this work, we propose a novel idea that uses the CVD growth method without pre-deposited metal catalysts can directly synthesize graphene on insulator substrates, which develops into a one-step approach not only allowing to bypass the wet transfer but also to obtain the electronicgrade and large-scale graphene films on which graphenetronics are developed. On the other hand, following well-defined manufacturing process mentioned before, high-speed graphenetronics have achieved recorded unity current gain cutoff frequency of 43 GHz realized with transferred graphene films on AlN substrate. To data, this is still a superlative extrinsic cutoff frequency on graphene-based electronics. In the end, a short conclusion and prospect are represented that graphene has been already showing the remarkable potential to be a one of channel
materials in the next generation.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,
vol. 306, no. 5696, pp. 666–669, 2004.
[2] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of
graphene nanoribbons,” Phys. Rev. Lett., vol. 98, no. 20, p. 206805, 2007.
[3] D. A. Areshkin and C. T. White, “Building blocks for integrated graphene circuits,” Nano
Lett., vol. 7, no. 11, pp. 3253–3259, 2007.
[4] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris,
“Operation of graphene transistors at gigahertz frequencies,” Nano Lett., vol. 9, no. 1,
pp. 422–426, 2008.
[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L.
Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.,
vol. 146, no. 9, pp. 351–355, 2008.
[6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass,
A. N. Marchenkov, et al., “Electronic confinement and coherence in patterned epitaxial
graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.
Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,”
Science, vol. 320, no. 5881, pp. 1308–1308, 2008.
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.
Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, no. 3,
pp. 902–907, 2008.
[9] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388,
2008.
[10] E. Fradkin, “Critical behavior of disordered degenerate semiconductors. ii. spectrum and
transport properties in mean-field theory,” Phys. Rev. B, vol. 33, pp. 3263–3268, Mar
1986.
[11] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183–
191, 2007.
[12] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C 60:
Buckminsterfullerene,” Nature, vol. 318, no. 6042, p. 162−163, 1985.
[13] S. Iijima et al., “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348,
pp. 56–58, 1991.
[14] B. T. Kelly, Physics of graphite, vol. 3. Applied Science London, 1981.
[15] C. L. Kane, “Materials science: Erasing electron mass,” Nature, vol. 438, pp. 168–170,
2005.
[16] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein
paradox in graphene,” Nat. Phys., vol. 2, no. 9, pp. 620–625, 2006.
[17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in
graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[18] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum
Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204,
2005.
[19] M. S. Dresselhaus, A. Jorio, and R. Saito, “Characterizing graphene, graphite, and carbon
nanotubes by Raman spectroscopy,” Annu. Rev. Condens. Matter Phys., vol. 1, no. 1,
pp. 89–108, 2010.
[20] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, “Kohn anomalies and
electron-phonon interactions in graphite,” Phys. Rev. Lett., vol. 93, no. 18, p. 185503,
2004.
[21] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc.
London, Ser. A, vol. 362, no. 1824, pp. 2271–2288, 2004.
[22] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Phonon linewidths
and electron-phonon coupling in graphite and nanotubes,” Phys. Rev. B, vol. 73, no. 15,
p. 155426, 2006.
[23] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,
D. Jiang, K. S. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene
layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006.
[24] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–
phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, no. 1,
pp. 47–57, 2007.
[25] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon
coupling in graphene,” Phys. Rev. Lett., vol. 98, no. 16, p. 166802, 2007.
[26] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.
Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, et al., “Monitoring dopants
by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.,
vol. 3, no. 4, pp. 210–215, 2008.
[27] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito,
“Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem.
Chem. Phys., vol. 9, no. 11, pp. 1276–1290, 2007.
[28] N. Ferralis, R. Maboudian, and C. Carraro, “Evidence of structural strain in epitaxial
graphene layers on 6H-SiC (0001),” Phys. Rev. Lett., vol. 101, no. 15, p. 156801, 2008.
[29] L. Malard, M. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in
graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009.
[30] L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz,
M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects
in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.,
vol. 11, no. 8, pp. 3190–3196, 2011.
[31] V. Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Cançado, C. A. Achete, and A. Jorio,
“Raman signature of graphene superlattices,” Nano Lett., vol. 11, no. 11, pp. 4527–4534,
2011.
[32] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and
A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning singleelectron
transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2007.
[33] A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater.,
vol. 6, no. 11, pp. 858–861, 2007.
[34] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene,”
EPJ B, vol. 51, no. 2, pp. 157–160, 2006.
[35] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, “Subpoissonian
shot noise in graphene,” Phys. Rev. Lett., vol. 96, no. 24, p. 246802, 2006.
[36] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phase-coherent
transport in graphene quantum billiards,” Science, vol. 317, no. 5844, pp. 1530–1533,
2007.
[37] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional
graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, p. 186806, 2007.
[38] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak,
and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev.
Lett., vol. 100, no. 1, p. 016602, 2008.
[39] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance
limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4, pp. 206–
209, 2008.
[40] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Chargedimpurity
scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381, 2008.
[41] M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations in
graphene,” Philos. Trans. R. Soc. London, Ser. A, vol. 366, no. 1863, pp. 195–204, 2008.
[42] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended
graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
[43] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality
graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
[44] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures
by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805, 2007.
[45] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for
graphene transport,” Proc. Natl. Acad. Sci., vol. 104, no. 47, pp. 18392–18397, 2007.
[46] A. K. M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, and K. I. Bolotin, “Probing
charge scattering mechanisms in suspended graphene by varying its dielectric environment,”
Nat. Commun., vol. 3, p. 734, 2012.
[47] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, “Tuning
the effective fine structure constant in graphene: Opposing effects of dielectric screening
on short- and long-range potential scattering,” Phys. Rev. Lett., vol. 101, no. 14,
p. 146805, 2008.
[48] N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller,
K. L. Shepard, and J. Hone, “Chemical vapor deposition-derived graphene with electrical
performance of exfoliated graphene,” Nano Lett., vol. 12, no. 6, pp. 2751–2756, 2012.
[49] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene
for device applications,” Nano Lett., vol. 7, no. 11, pp. 3394–3398, 2007.
[50] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern,
B. Holland, M. Byrne, Y. K. Gun’Ko, et al., “High-yield production of graphene by
liquid-phase exfoliation of graphite,” Nat. Nanotechnol., vol. 3, no. 9, pp. 563–568, 2008.
[51] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous
dispersions of graphene nanosheets,” Nat. Nanotechnol., vol. 3, no. 2, pp. 101–105, 2008.
[52] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M.
Blighe, S. De, Z. Wang, I. T. McGovern, et al., “Liquid phase production of graphene
by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc., vol. 131,
no. 10, pp. 3611–3620, 2009.
[53] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle,
J. Hass, M. L. Sadowski, et al., “Epitaxial graphene,” Solid State Commun., vol. 143,
no. 1, pp. 92–100, 2007.
[54] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney,
T. Ohta, S. A. Reshanov, J. Röhrl, et al., “Towards wafer-size graphene layers by atmospheric
pressure graphitization of silicon carbide,” Nat. Mater., vol. 8, no. 3, pp. 203–
207, 2009.
[55] J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a
nickel (111) surface: A surface phase transition,” Surf. Sci., vol. 43, no. 2, pp. 493–520,
1974.
[56] M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni (111),”
Surf. Sci., vol. 82, no. 1, pp. 228–236, 1979.
[57] T. A. Land, T. H. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation
of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition,”
Surf. Sci., vol. 264, no. 3, pp. 261–270, 1992.
[58] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, “Two-dimensional Ir cluster
lattice on a graphene Moiré on Ir (111),” Phys. Rev. Lett., vol. 97, no. 21, p. 215501, 2006.
[59] P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater.,
vol. 7, no. 5, pp. 406–411, 2008.
[60] C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang,
et al., “Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel
cell,” Adv. Mater., vol. 20, no. 9, pp. 1644–1648, 2008.
[61] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-
Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable
transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009.
[62] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong,
“Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,”
Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
[63] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc,
et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,”
Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[64] G. H. Han, F. Gunes, J. J. Bae, E. S. Kim, S. J. Chae, H. J. Shin, J. Y. Choi, D. Pribat, and
Y. H. Lee, “Influence of copper morphology in forming nucleation seeds for graphene
growth,” Nano Lett., vol. 11, pp. 4144–4148, 2011.
[65] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dyesensitized
solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[66] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells
with solution-processed graphene transparent electrodes,” Appl. Phys. Lett., vol. 92,
p. 263302, 2008.
[67] S. Sun, L. Gao, and Y. Liu, “Enhanced dye-sensitized solar cell using graphene-TiO photoanode
prepared by heterogeneous coagulation,” Appl. Phys. Lett., vol. 96, p. 083113,
2010.
[68] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical
deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid
solar cells,” Small, vol. 6, no. 2, pp. 307–312, 2010.
[69] E. W. Hill, A. Vijayaragahvan, and K. S. Novoselov, “Graphene sensors,” IEEE Sens. J.,
vol. 11, no. 12, pp. 3161–3170, 2011.
[70] F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett.,
vol. 3, no. 13, pp. 1746–1753, 2012.
[71] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett,
G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, et al., “Graphene-silica composite thin
films as transparent conductors,” Nano Lett., vol. 7, no. 7, pp. 1888–1892, 2007.
[72] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of
solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano,
vol. 2, no. 3, pp. 463–470, 2008.
[73] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and
R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent
conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
[74] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.
Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films for transparent
electrodes,” Nat. Nanotechnol., vol. 5, no. 8, pp. 574–578, 2010.
[75] Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, “Reduction of Fermi velocity in folded
graphene observed by resonance Raman spectroscopy,” Phys. Rev. B, vol. 77, no. 23,
p. 235403, 2008
[76] Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. N. Sun, Y. Q. Wu,
C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated
circuit,” Science, vol. 332, pp. 1294–1297, 2011.
[77] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C.
Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry in
graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2008.
[78] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L.
Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in
graphene,” Phys. Rev. Lett., vol. 99, no. 24, p. 246803, 2007.
[79] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee,
“Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3
dielectric,” Appl. Phys. Lett., vol. 94, no. 6, p. 062107, 2009.
[80] C.-C. Lu, Y.-C. Lin, Z. Liu, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, “Twisting bilayer
graphene superlattices,” ACS Nano, vol. 7, no. 3, pp. 2587–2594, 2013.
[81] C.-H. Yeh, H. Medina, C.-C. Lu, K.-P. Huang, Z. Liu, K. Suenaga, and P.-W. Chiu, “Scalable
graphite/copper bishell composite for high-performance interconnects,” ACS Nano,
vol. 8, no. 1, pp. 275–282, 2014.
[82] J.-F. Chang, Combined Magnetron Sputtering and ECR-CVD Deposition of Diamondlike
Carbon Films. PhD thesis, Department of Electrical Engineering, National Sun
Yat-sen University, 1992.
[83] J. Robertson, G. Zhong, S. Hofmann, B. C. Bayer, C. S. Esconjauregui, H. Telg, and
C. Thomsen, “Use of carbon nanotubes for vlsi interconnects,” Diam. Relat. Mater.,
vol. 18, pp. 957–962, 2009.
[84] K. J. Lee, M. Qazi, J. Kong, and A. P. Chandrakasan, “Low-swing signaling on monolithically
integrated global graphene interconnects,” IEEE Trans. Electron Devices, vol. 57,
pp. 3418–3425, 2010.
[85] X. Y. Chen, D. Akinwande, K. J. Lee, G. F. Close, S. Yasuda, B. C. Paul, S. Fujita,
J. Kong, and H. S. P. Wong, “Fully integrated graphene and carbon nanotube interconnects
for gigahertz high-speed cmos electronics,” IEEE Trans. Electron Devices, vol. 57,
pp. 3137–3143, 2010.
[86] T. H. Yu, E. K. Lee, B. Briggs, B. Nagabhirava, and B. Yu, “Bilayer graphene/copper
hybrid on-chip interconnect: A reliability study,” IEEE Trans. Nanotechnol., vol. 10,
pp. 710–714, 2011.
[87] D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with
polymer ilds,” Thin Solid Films, vol. 308, pp. 523–528, 1997.
[88] S. Yokogawa and H. Tsuchiya, “Effects of al doping on the electromigration performance
of damascene cu interconnects,” J. Appl. Phys., vol. 101, p. 013513, 2007.
[89] A. E. Kaloyeros and E. Eisenbraun, “Ultrathin diffusion barriers/liners for gigascale copper
metallization,” Annu. Rev. Mater. Sci., vol. 30, pp. 363–385, 2000.
[90] M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. H. Chen, J. C. Tsang, and P. Avouris,
“Energy dissipation in graphene field-effect transistors,” Nano Lett., vol. 9, pp. 1883–
1888, 2009.
[91] A. D. Liao, J. Z. Wu, X. R. Wang, K. Tahy, D. Jena, H. J. Dai, and E. Pop, “Thermally
limited current carrying ability of graphene nanoribbons,” Phys. Rev. Lett., vol. 106,
p. 256801, 2011.
[92] C. M. Tan and A. Roy, “Electromigration in ulsi interconnects,” Mat. Sci. Eng. R., vol. 58,
pp. 3–75, 2007.
[93] J. R. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectron.
Reliab., vol. 39, pp. 1595–1602, 1999.
[94] M. Wada, N. Matsunaga, and Y. Akimoto, “Semiconductor devices.”
[95] J. H. Zhang, C. Goldberg, W. Kleemeier, and R. K. Sampson, “Copper interconnect
structure having a graphene cap.”
[96] C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim, H. J.
Choi, S. H. Choe, M. H. Ham, and B. H. Lee, “Effects of multi-layer graphene capping
on cu interconnects,” Nanotechnology, vol. 24, p. 115707, 2013.
[97] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and
J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor
deposition,” Nano Lett., vol. 9, pp. 30–35, 2009.
[98] C. C. Lu, C. H. Jin, Y. C. Lin, C. R. Huang, K. Suenaga, and P. W. Chiu, “Characterization
of graphene grown on bulk and thin film nickel,” Langmuir, vol. 27, pp. 13748–13753,
2011.
[99] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni,
I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of
high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312–
1314, 2009.
[100] Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu,
D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao,
S. S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain
boundaries in graphene grown by chemical vapour deposition,” Nat. Mater., vol. 10,
pp. 443–449, 2011.
[101] L. Sun, G. X. Qin, J. H. Seo, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “12-ghz thinfilm
transistors on transferrable silicon nanomembranes for high-performance flexible
electronics,” Small, vol. 6, pp. 2553–2557, 2010.
[102] Z. C. Li, P. Wu, C. X. Wang, X. D. Fan, W. H. Zhang, X. F. Zhai, C. G. Zeng, Z. Y.
Li, J. L. Yang, and J. G. Hou, “Low-temperature growth of graphene by chemical vapor
deposition using solid and liquid carbon sources,” Acs Nano, vol. 5, pp. 3385–3390,
2011.
[103] G. Nandamuri, S. Roumimov, and R. Solanki, “Remote plasma assisted growth of
graphene films,” Appl. Phys. Lett., vol. 96, p. 154101, 2010.
[104] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo,
A. Vanhulsel, and C. Van Haesendonck, “Synthesis of few-layer graphene via microwave
plasma-enhanced chemical vapour deposition,” Nanotechnology, vol. 19, p. 305604,
2008.
[105] H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, “Graphene-based ambipolar rf mixers,”
IEEE Electron Device Lett., vol. 31, pp. 906–908, 2010.
[106] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson,
and P.-W. Chiu, “Metal-free growth of nanographene on silicon oxides for transparent
conducting applications,” Adv. Funct. Mater., vol. 22, no. 10, pp. 2123–2128, 2012.
[107] I. Vlassiouk, M. Regmi, P. F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role
of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” Acs
Nano, vol. 5, pp. 6069–6076, 2011.
[108] A. Behnam, L. Noriega, Y. Choi, Z. C. Wu, A. G. Rinzler, and A. Ural, “Resistivity scaling
in single-walled carbon nanotube films patterned to submicron dimensions,” Appl.
Phys. Lett., vol. 89, p. 093107, 2006.
[109] Y. L. Kim, B. Li, X. H. An, M. G. Hahm, L. Chen, M. Washington, P. M. Ajayan, S. K.
Nayak, A. Busnaina, S. Kar, and Y. J. Jung, “Highly aligned scalable platinum-decorated
single-wall carbon nanotube arrays for nanoscale electrical interconnects,” Acs Nano,
vol. 3, pp. 2818–2826, 2009.
[110] J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and
Z. F. Ren, “Atomic-scale imaging of wall-by-wall breakdown and concurrent transport
measurements in multiwall carbon nanotubes,” Phys. Rev. Lett., vol. 94, p. 236802, 2005.
[111] I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of
the raman spectra of graphene and graphene multilayers,” Nano Lett., vol. 7, pp. 2645–
2649, 2007.
[112] I. Calizo, F. Miao, W. Bao, C. N. Lau, and A. A. Balandin, “Variable temperature raman
microscopy as a nanometrology tool for graphene layers and graphene-based devices,”
Appl. Phys. Lett., vol. 91, p. 071913, 2007.
[113] L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang,
Y. Huang, and X. F. Duan, “High-speed graphene transistors with a self-aligned nanowire
gate,” Nature, vol. 467, pp. 305–308, 2010.
[114] E. Pop, D. A. Mann, K. E. Goodson, and H. J. Dai, “Electrical and thermal transport in
metallic single-wall carbon nanotubes on insulating substrates,” J. Appl. Phys., vol. 101,
pp. –, 2007.
[115] V. E. Dorgan, M. H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on
sio2,” Appl. Phys. Lett., vol. 97, p. 082112, 2010.
[116] M. H. Bae, Z. Y. Ong, D. Estrada, and E. Pop, “Imaging, simulation, and electrostatic
control of power dissipation in graphene devices,” 2010.
[117] V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-field electrical
and thermal transport in suspended graphene,” Nano Lett., vol. 13, pp. 4581–4586, 2013.
[118] W. Wu, S. H. Kang, J. S. Yuan, and A. S. Oates, “Thermal effect on electromigration performance
for al/sio2, cu/sio2 and cu/low-k interconnect systems,” Solid State Electron.,
vol. 45, pp. 59–62, 2001.
[119] I. J. Bahl, Fundamentals of RF and Microwave Transistor Amplifiers. John Wiley &
Sons, 2008.
[120] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic
performance limits of graphene devices on sio2,” Nat. Nanotechnol., vol. 3, pp. 206–
209, 2008.
[121] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation
in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol.,
vol. 3, pp. 654–659, 2008.
[122] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.
Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring
dopants by raman scattering in an electrochemically top-gated graphene transistor,”
Nat. Nanotechnol., vol. 3, pp. 210–215, 2008.
[123] J. L. Xia, F. Chen, J. H. Li, and N. J. Tao, “Measurement of the quantum capacitance of
graphene,” Nat. Nanotechnol., vol. 4, pp. 505–509, 2009.
[124] Z. L. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. K. Hu, M. Ruan,
J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. de Heer, “Record maximum
oscillation frequency in c-face epitaxial graphene transistors,” Nano Lett., vol. 13,
pp. 942–947, 2013.
[125] D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. N. Xia, and P. Avouris, “Utilization
of a buffered dielectric to achieve high field-effect carrier mobility in graphene
transistors,” Nano Lett., vol. 9, pp. 4474–4478, 2009.
[126] S. Y. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. D. Ye, C. W. Zhou, T. J. Marks,
and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent
and flexible electronics,” Nat. Nanotechnol., vol. 2, pp. 378–384, 2007.
[127] M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire
arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater.,
vol. 6, pp. 379–384, 2007.
[128] X. F. Duan, C. M. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman,
“High-performance thin-film transistors using semiconductor nanowires and nanoribbons,”
Nature, vol. 425, pp. 274–278, 2003.
[129] C. Wang, J.-C. Chien, H. Fang, K. Takei, J. Nah, E. Plis, S. Krishna, A. M. Niknejad,
and A. Javey, “Self-aligned, extremely high frequency iii-v metal-oxide-semiconductor
field-effect transistors on rigid and flexible substrates,” Nano Lett., vol. 12, pp. 4140–
4145, 2012.
[130] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and
E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science,
vol. 290, pp. 2123–2126, 2000.
[131] G. B. Blanchet, C. R. Fincher, and F. Gao, “Polyaniline nanotube composites: A highresolution
printable conductor,” Appl. Phys. Lett., vol. 82, pp. 1290–1292, 2003.
[132] G. X. Qin, H. C. Yuan, G. K. Celler, J. G. Ma, and Z. Q. Ma, “Influence of bending
strains on radio frequency characteristics of flexible microwave switches using singlecrystal
silicon nanomembranes on plastic substrate,” Appl. Phys. Lett., vol. 99, p. 153106,
2011.
[133] T. Kinkeldei, N. Munzenrieder, C. Zysset, K. Cherenack, Tro, x, and G. ster, “Encapsulation
for flexible electronic devices,” IEEE Electron Device Lett., vol. 32, pp. 1743–
1745, 2011.
[134] C. Wang, J. C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey,
“Extremely bendable, high-performance integrated circuits using semiconducting carbon
nanotube networks for digital, analog, and radio-frequency applications,” Nano Lett.,
vol. 12, pp. 1527–1533, 2012.
[135] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and
circuits with extreme bending stability,” Nat. Mater., vol. 9, pp. 1015–1022, 2010.
[136] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, 2008.
[137] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum,
J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from
graphene sheets,” Science, vol. 315, pp. 490–493, 2007.
[138] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and
P. Avouris, “100-ghz transistors from wafer-scale epitaxial graphene,” Science, vol. 327,
pp. 662–662, 2010.
[139] N. Petrone, I. Meric, J. Hone, and K. L. Shepard, “Graphene field-effect transistors with
gigahertz-frequency power gain on flexible substrates,” Nano Lett., vol. 13, pp. 121–125,
2012.
[140] X. Wang, S. M. Tabakman, and H. Dai, “Atomic layer deposition of metal oxides on
pristine and functionalized graphene,” J. Am. Chem. Soc., vol. 130, pp. 8152–8153, 2008.
[141] Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, and Z. X. Shen, “Tunable stress
and controlled thickness modification in graphene by annealing,” ACS Nano, vol. 2,
pp. 1033–1039, 2008.
[142] J. A. Robinson, M. LaBella, K. A. Trumbull, X. J. Weng, R. Cavelero, T. Daniels,
Z. Hughes, M. Hollander, M. Fanton, and D. Snyder, “Epitaxial graphene materials integration:
Effects of dielectric overlayers on structural and electronic properties,” ACS
Nano, vol. 4, pp. 2667–2672, 2010.
[143] M. J. Hollander, M. LaBella, Z. R. Hughes, M. Zhu, K. A. Trumbull, R. Cavalero, D. W.
Snyder, X. J. Wang, E. Hwang, S. Datta, and J. A. Robinson, “Enhanced transport and
transistor performance with oxide seeded high-kappa gate dielectrics on wafer-scale epitaxial
graphene,” Nano Lett., vol. 11, pp. 3601–3607, 2011.
[144] B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence
of carrier mobility in graphene with hfo2 top dielectric,” Appl. Phys. Lett., vol. 97,
p. 123105, 2010.
[145] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, and P.-W. Chiu, “High mobility flexible
graphene field-effect transistors with self-healing gate dielectrics,” ACS Nano, vol. 6,
no. 5, pp. 4469–4474, 2012.
[146] A. Badmaev, Y. C. Che, Z. Li, C. Wang, and C. W. Zhou, “Self-aligned fabrication of
graphene rf transistors with t-shaped gate,” ACS Nano, vol. 6, pp. 3371–3376, 2012.
[147] H. Zhou, J. H. Seo, D. M. Paskiewicz, Y. Zhu, G. K. Celler, P. M. Voyles, W. D. Zhou,
M. G. Lagally, and Z. Q. Ma, “Fast flexible electronics with strained silicon nanomembranes,”
Sci. Rep., vol. 3, p. 1291, 2013.
[148] C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Darnbrine, H. Happy,
and V. Derycke, “Flexible gigahertz transistors derived from solution-based single-layer
graphene,” Nano Lett., vol. 12, pp. 1184–1188, 2012.
[149] J. Lee, T.-J. Ha, H. Li, K. N. Parrish, M. Holt, A. Dodabalapur, R. S. Ruoff, and D. Akinwande,
“25 ghz embedded-gate graphene transistors with high-k dielectrics on extremely
flexible plastic sheets,” ACS Nano, vol. 7, pp. 7744–7750, 2013.[150] H. Wang, A. Hsu, D. S. Lee, K. K. Kim, J. Kong, and T. Palacios, “Delay analysis
of graphene field-effect transistors,” IEEE Electron Device Lett., vol. 33, pp. 324–326,
2012.
[151] A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity
in deeply scaled nmos: How close to the thermal limit?,” IEEE Electron Device Lett.,
vol. 22, pp. 95–97, 2001.
[152] R. Cheng, J. W. Bai, L. Liao, H. L. Zhou, Y. Chen, L. X. Liu, Y. C. Lin, S. Jiang, Y. Huang,
and X. F. Duan, “High-frequency self-aligned graphene transistors with transferred gate
stacks,” Proc. Natl. Acad. Sci., vol. 109, pp. 11588–11592, 2012.
[153] X. Hongtao, C. Sanabria, A. Chini, S. Keller, U. K. Mishra, and R. A. York, “A c-band
high-dynamic range gan hemt low-noise amplifier,” IEEE Microwave Wireless Compon.
Lett., vol. 14, pp. 262–264, 2004.
[154] B. Godara and A. Fabre, “A new application of current conveyors: The design of wideband
controllable low-noise amplifiers,” Radioengineering, vol. 17, pp. 91–100, 2008.
[155] B. M. Liu, C. H. Wang, M. L. Ma, and S. Q. Guo, “An ultra-low-voltage and ultra-lowpower
2.4 ghz lna design,” Radioengineering, vol. 18, pp. 527–531, 2009.
[156] L. Liao, J. W. Bai, R. Cheng, H. L. Zhou, L. X. Liu, Y. Liu, Y. Huang, and X. F. Duan,
“Scalable fabrication of self-aligned graphene transistors and circuits on glass,” Nano
Lett., vol. 12, pp. 2653–2657, 2012.
[157] Q. Z. Wan, C. H. Wang, and M. L. Ma, “A novel 2.4ghz cmos up-conversion currentmode
mixer,” Radioengineering, vol. 18, pp. 532–536, 2009.
[158] Q. Z. Wan and C. H. Wang, “A 0.18-mu m cmos high-performance up-conversion mixer
for 2.4-ghz transmitter application,” Frequenz, vol. 64, pp. 14–18, 2010.
[159] J. D. Chen and Z. M. Lin, “2.4 ghz high iip3 and low-noise down-conversion mixer,”
IEEE Asia Pacific Conf., pp. 37–40, 2006.
[160] “ADL5350 from Analog Devices; the datasheet is available at
www.analog.com/static/imported-files/data sheets/ ADL5350.pdf.”
[161] S. O. Koswatta, A. Valdes-Garcia, M. B. Steiner, Y. M. Lin, and P. Avouris, “Ultimate rf
performance potential of carbon electronics,” IEEE Trans. Microw. Theory Tech., vol. 59,
pp. 2739–2750, 2011.
[162] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-
W. Chiu, “Remote catalyzation for direct formation of graphene layers on oxides,” Nano
Lett., vol. 12, no. 3, pp. 1379–1384, 2012.
[163] X. Li, E. A. Barry, J. M. Zavada, M. Buongiorno Nardelli, and K. W. Kim, “Surface polar
phonon dominated electron transport in graphene,” Appl. Phys. Lett., vol. 97, no. 23,
p. 232105, 2010.
[164] I.-T. Lin and J.-M. Liu, “Surface polar optical phonon scattering of carriers in graphene
on various substrates,” Appl. Phys. Lett., vol. 103, no. 8, p. 081606, 2013.
[165] C. Bungaro, K. Rapcewicz, and J. Bernholc, “Ab initio phonon dispersions of wurtzite
aln, gan, and inn,” Phys Rev B, vol. 61, pp. 6720–6725–, 2000.
[166] S. S. Ng, Z. Hassan, and H. Abu Hassan, “Experimental and theoretical studies of surface
phonon polariton of aln thin film,” Appl. Phys. Lett., vol. 90, no. 8, p. 081902, 2007.
[167] P. G. Emma and E. Kursun, “Is 3d chip technology the next growth engine for performance
improvement?,” IBM J. Res. Develop., vol. 52, p. 541–552, 2008.