簡易檢索 / 詳目顯示

研究生: 葉昭輝
Yeh, Chao-Hui
論文名稱: 新穎石墨烯電子元件: 由磊晶成長技術至高速電晶體應用
Graphenetronics: from Growth to High-Speed Transistors
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李佩雯
Li, Pei-Wen
徐碩鴻
Hsu, Shuo-Hung
邱博文
Chiu, Po-Wen
徐永珍
Hsu, Yung-Jane
李奎毅
Lee, Kuei-Yi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 158
中文關鍵詞: 石墨烯高速電晶體微波放大器頻率混波器低雜訊放大器軟性電子元件銅互聯技術電子迴旋共振化學氣象沉積石墨烯低溫成長倍頻器
外文關鍵詞: graphene, high speed transistor, radio frequency transistor, frequency mixer, low noise amplifier, flexible electronics, interconnect, ECR-CVD graphene, low temperature, frequency doubler
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在2004-2005年左右,"石墨烯"開啟了嶄新的研究大門,這個名詞引起了全球各個研究機構的關注,儼然形成一股研究熱潮,此後,數以千計的的文獻和研究相繼發表在國際知名期刊上。
    石墨烯以單原子碳層構成蜂窩狀晶格的二維材料,引發了眾多新穎研究的可能性;尤其它自身的物理特性與特殊的能帶結構,於相對論物理學上探索所有具足輕重的引響,更有機會應用在下一世代的電子產品。然而早在一開始,基於Mermin-Wagner 所提出之理論,得知在熱力學中,室溫下二維晶體結構是極其不穩定地,被認為是不可能單獨存在的事情;但自從A. K. Geim 和K. S. Novoselov 等人於曼徹斯特大學研究團隊中,想出一個在室溫下分離出單元子碳層並轉印在二氧化矽基板上,此方法為:以機械剝離法將高定向熱裂解石墨(HOPG)層層分離,而用的就是大家耳熟能詳的"Scotch tape",這樣如此簡單的膠帶材料,不但推翻了這根深柢固的想法,也是第一個成功製備石墨烯的實際例子,更為他們贏得了諾貝爾獎此桂冠。也因此,學術界積極開啟了一扇對二維材料研究的大門。
    石墨烯具備眾多特性優點,在電學特性上,室溫下的載子電流遷移率達到20,000 cm^2/V.s和長程彈道傳輸;光學特性上,在可見光範圍內的光吸收率只有2.3%,為一個高度透明導電材料;且具有42 Nm^-1的機械特性以及Young's modulus 為 1.0TPa 的斷裂強度,眾合以上特性,石墨烯成為目前為止難得一見的可貴材料。
    本論文重點針對以石墨烯為基礎所開發之多種電子元件應用,包含石墨烯基礎成長,石墨烯電晶體、利用互聯技術結合石墨烯和銅導線使其積體化與石墨烯軟性高頻電子元件。本論文分成三個主題,第一個主題包含第一、二章,講解了石墨烯的晶體結構、能帶結構、電學特性和製備等;第二個主題包含第三、四章,將石墨烯以低溫電子迴旋共振化學氣象沉積法直接成長於積體化的銅導線上,在奈密尺度的微縮下,依舊能保有優異的電流程載密度,更重要的是有效降低其操作阻抗,使未來元件朝奈米尺度不斷微縮的應用上,提供更穩定的可靠度;第三個主題包含第五、六、七章,首先介紹微波元件的基礎理論以及重要方程式之推導,接著深入解析石墨烯製備之軟性高頻電子元件製程應用,最重要的是利用本實驗室研發之自我對準設計,使得石墨烯電晶體得以在極高的兆赫頻率下操作,並進一步完成積體化之高頻接收器(包含低雜訊放大器、混波器)與倍頻器,最後進行元件分析。
    末節,對整個論文著作進行回顧,在未來我們對石墨烯等二維新穎材料持續寄予厚望,希望有朝一日為下一世代電子產品開創另一個高峰。


    The modern era of graphene“gold-rush”started around 2004–2005, when it became possible to fabricate samples with the toddler’s best friend – the Scotch tape. Since then, the publication trends in this area have been nearly exponential- with tens of thousands of publications just in
    the past few years.
    Graphene, an isolated mono-atomic carbon layer conformed into two-dimensional honeycomb lattice building blocks, has triggered off numerous novel research possibilities, due to
    its intriguing physics and as an emerging paradigm for relativistic condensed matter physics as well as showing great promise for its application in next generation electronics. Before A. K. Geim and K. S. Novoselov et al. envisioned a plausible method to isolate a single atomic
    carbon layer on SiO2; based on the Mermin-Wagner theorem, two-dimensional crystals were predicted as thermodynamically unstable formations and were thought of as non-existing in ambient environment that had so far been known only as an integral part of larger three-dimensional
    systems. The first successful example of monolayer graphene was achieved by using mechanical cleavage of highly oriented pyrolytic graphite (HOPG) [1] thus making an unprecedented accomplishment in 2-D material science to this day.
    The door opened by this first isolation of a 2-D crystal has opened countless doors for previously unknown applications. For instance, graphene has a host of characteristics that show great promise for the development of post silicon electronics [1–4], including a large roomtemperature carrier mobility [5] (20,000 cm^2/V.s) and long-range ballistic transport [6]. In addition to its electrical properties, graphene is also an highly transparent material with an absorption of 2.3 % within visible light range [7]. Its thermal conductivity is measured to be 5,000 W mK^-1 for a monolayer graphene at room temperature [8]. The intrinsic mechanical properties of free-standing monolayer graphene have been examined to be a breaking strength of 42 N m^-1 and a Young's modulus of 1.0 TPa, indicating that it is one of the strongest materials ever measured [9].
    This thesis focuses on the various electrical applications of graphene-based devices, integrated with graphite/metal bishell interconnects and graphene-FET applied on analogue microwave circuits. Besides, the fundamental physics of graphene and an innovative strategy for high quality CVD-graphene synthesis that are introduced at the beginning not only lead us to a sufficient understanding in material science but also introduce the state-of-the-art of graphenetronics. This thesis content is categorized in to three parts and organized as follows. The first part presents the fundamental physics of graphene, graphene synthesis by chemical vapor deposition (CVD) and electrical calibration, addressing its emerging application in large scale in flexible electronics. Chapter 1 starts with the fundamentals of graphene, including the crystal
    structures as well as its energy band structure. Subsequently, we present an explanation and simplified mechanism of the Raman scattering, which is an important tool to examine the quality of graphene. We introduce the basic knowledge of Raman scattering and the phonon dispersion relation of graphene. The transport properties such as electric field-effect, minimum conductivity and scattering mechanism within graphene will also be explained briefly. Chapter 2 presents graphene growth mechanism and electrical transport analysis in graphene-based FETs. In brief, we show a new facile growth process to improve graphene quality by using CVD technology. In order to examine isolated graphene, the transfer technique and FET fabrication process are represented in following sections. To extract field effect mobility, Drude model is employed to describe the electrical behavior of graphene devices.
    Starting from the second part, we show a novel interconnect technique: metal/graphite conformal bi-shell booster via plasma-assisted technology to synthesize well-controlled graphene sheets. Chapter 3 starts with a introduction of electron cyclotron resonance (ECR) chemical
    vapor deposition (CVD) of graphene and Chapter 4 presents the fabrication and characterizations of novel electrical interconnect test lines made of Cu/Graphite bi-shell composite with the graphite cap layer grown by ECR-CVD. The graphite layer can boost the composite structure
    current-carrying capacity to 10^8 A/cm^2, more than an order of magnitude higher than that of bare metal lines, further reducing resistivity of fine test lines by 20 %. Raman measurements reveal that physical breakdown occurs at  680 – 720 ◦C. Modeling the current vs: voltage curves up to breakdown shows that the maximum current density of the composites is limited by self-heating of the graphite, suggesting the strong roles of phonon scattering at high fields and highlighting the significance of metal counterpart for enhanced thermal dissipation.
    The third, and final, part shows that state-of-the-art graphene-based microwave transistors can be implemented on diverse substrates, including both flexible PET and rigid AlN substrates,thus further assuring the feasibility of advanced applications in high-speed analogue circuits.
    These results indicate that self-aligned graphene FETs can provide remarkably improved deviceperformance and stability for a range of applications in flexible electronics. Chapter 5 starts with fundamental concepts in microwave transistors, including the evolutionary history of microwave transistors and a well-understood two-port networks representation. In Chapter 6, the purpose shows the novel fabrication process for high-performance CVD graphene FETs with self-aligned drain/source contacts have been presented and implemented on flexible PET substrates. It is very promising to apply this new strategy onto flexible high-speed electronics, especially for new generation wireless communication systems. In our process, an Al gate was directly defined on graphene by e-beam lithography, followed by pure O2 exposure, forming
    a native oxide layer around the Al wire. We also characterize other device properties, such as charge neutrally point shifting, current saturation, RF properties, device performance in diverse bending states, and further applications in microwave integrated circuits such as low noise amplifier, frequency mixer and doubler.
    As a closure, Chapter 7, shows state-of-the-art of graphenetronics built on rigid substrates. In this work, we propose a novel idea that uses the CVD growth method without pre-deposited metal catalysts can directly synthesize graphene on insulator substrates, which develops into a one-step approach not only allowing to bypass the wet transfer but also to obtain the electronicgrade and large-scale graphene films on which graphenetronics are developed. On the other hand, following well-defined manufacturing process mentioned before, high-speed graphenetronics have achieved recorded unity current gain cutoff frequency of 43 GHz realized with transferred graphene films on AlN substrate. To data, this is still a superlative extrinsic cutoff frequency on graphene-based electronics. In the end, a short conclusion and prospect are represented that graphene has been already showing the remarkable potential to be a one of channel
    materials in the next generation.

    Abstract I Acknowledgements V Publication List VII Contents XI I Fundamental Physics, Transport Properties, and Synthesis Technology of Graphene 1 1 Graphene Physics and Electronic Transport Properties . .3 1.1 Allotropic Forms of Graphitic Carbon . . . . . . . . .3 1.2 Electron Hybridization of Carbon Orbitals . . . . . . 5 1.3 Band Structure of Graphene Using the Tight Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Massless Dirac Fermions . . . . . . . . . . . . . . .13 1.5 Raman Spectra for Graphene Quality Calibration . . . 15 1.6 First- and Second-Order Raman Scattering in Graphene 19 1.7 Electrical Transport Properties of Graphene . . . . .22 1.7.1 Electric Field Effect in Graphene . . . . . . . . 22 1.7.2 Conductivity Minimum . . . . . . . . . . . . . . . 24 1.7.3 Scattering Mechanism in Graphene . . . . . . . . . 24 2 Graphene Growth Mechanisms and Electrical Transport Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 Graphene synthesis . . . . . . . . . . . . . . . . . 27 2.2 Experimental Details of Graphene Growth . . . . . . .28 2.2.1 Chemical Vapor Deposition System . . . . . . . . . 28 2.3 Graphene Growth Process and Mechanisms . . . . . . . 29 2.4 Graphene Transfer . . . . . . . . . . . . . . . . . 32 2.5 Device Fabrication . . . . . . . . . . . . . . . . . 34 2.6 Electrical Transport Analysis . . . . . . . . . . . .36 II Novel Interconnect: Metal/Graphite Conformal Bishell Booster. . . . . . . . . . . . . . . . . . . . . . . . . 41 3 ECR Chemical Vapor Deposition of Graphene. . . . . . . 45 3.1 ECR-CVD Setup . . . . . . . . . . . . . . . . . . . .45 3.2 Graphene Synthesis Via ECR-CVD Technology . . . . . 48 4 Scalable Graphite/Cu Bishell Composite for High Performance Interconnects . . . . . . . . . . . . . . . .55 4.1 Experimental Details Characterization . . . . . . . . . . . . . . . . . . . . 55 4.2 Results and Discussion . . . . . . . . . . . . . . . 57 4.3 Atom Diffusion . . . . . . . . . . . . . . . . . . . 67 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . 68 III High-Speed Graphenetronics for Future Applications . 69 5 Fundamental Concepts in Microwave Transistors . . . . .73 5.1 Introduction to Microwave Transistors . . . . . . . .73 5.1.1 Historic Context of Radio-Frequency/Microwave Transistors . . . . . . . . . . . . . . . . . . . . . . .73 5.1.2 Microwave Transistor Amplifiers . . . . . . . . . 74 5.1.3 What Potential Does Graphene Hold? . . . . . . . . 75 5.2 Two-Port Networks Representation . . . . . . . . . . 76 5.2.1 Introduction of The impedance, admittance, hybrid, and ABCD Matrices . . . . . . . . . . . . . . . . . . . .76 5.2.2 Transmission-Line Concepts . . . . . . . . . . . . 77 5.2.3 The Scattering Matrix . . . . . . . . . . . . . . .81 6 State-of-The-Art of Graphene RF Devices . . . . . . . 87 6.1 Manufacturing Process and Characterizations for Flexible Graphene RF Transistors . . . . . . . . . . . . 87 6.1.1 Manufacturing Process for Graphene-Based RF Device 87 6.1.2 DC Signal Characterization . . . . . . . . . . . . 91 6.2 RF Properties Characterization . . . . . . . . . . . 96 7 Graphene Based Microwave Transistor . . . . . . . . . 115 7.1 Low Noise Amplifier . . . . . . . . . . . . . . . . 115 7.2 Frequency Mixer . . . . . . . . . . . . . . . . . . 118 7.3 Frequency Doubler . . . . . . . . . . . . . . . . . 122 7.4 State-of-The-Art of Graphenetronics Built on Rigid Substrates . . . . . . . . . . . . . . . . . . . . . . .124 7.4.1 RF Transistors Based on Directly Epitaxial Graphene Thin Film . . . . . . . . . . . . . . . . . . . . . . . 125 7.4.2 High Speed Graphenetronics on Al-Based Rigid Substrates . . . . . . . . . . . . . . . . . . . . . . .127 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . .134 8 Summary and Prospect . . . . . . . . . . . . . . . . 135 Appendix A sp3 hybridization wavefunction . . . . . . . 137 Appendix B Details of Graphene Transfer Process . . . . 139 Appendix C Microwave Bands . . . . . . . . . . . . . . .141 Appendix D Measurement . . . . . . . . . . . . . . . . .143 Appendix E Extracted parameters of G-FET on AlN substrate . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography . . . . . . . . . . . . . . . . . . . . . .147

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
    Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,
    vol. 306, no. 5696, pp. 666–669, 2004.
    [2] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of
    graphene nanoribbons,” Phys. Rev. Lett., vol. 98, no. 20, p. 206805, 2007.
    [3] D. A. Areshkin and C. T. White, “Building blocks for integrated graphene circuits,” Nano
    Lett., vol. 7, no. 11, pp. 3253–3259, 2007.
    [4] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris,
    “Operation of graphene transistors at gigahertz frequencies,” Nano Lett., vol. 9, no. 1,
    pp. 422–426, 2008.
    [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L.
    Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.,
    vol. 146, no. 9, pp. 351–355, 2008.
    [6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass,
    A. N. Marchenkov, et al., “Electronic confinement and coherence in patterned epitaxial
    graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
    [7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.
    Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,”
    Science, vol. 320, no. 5881, pp. 1308–1308, 2008.
    [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.
    Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, no. 3,
    pp. 902–907, 2008.
    [9] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
    intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388,
    2008.
    [10] E. Fradkin, “Critical behavior of disordered degenerate semiconductors. ii. spectrum and
    transport properties in mean-field theory,” Phys. Rev. B, vol. 33, pp. 3263–3268, Mar
    1986.
    [11] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183–
    191, 2007.
    [12] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C 60:
    Buckminsterfullerene,” Nature, vol. 318, no. 6042, p. 162−163, 1985.
    [13] S. Iijima et al., “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348,
    pp. 56–58, 1991.
    [14] B. T. Kelly, Physics of graphite, vol. 3. Applied Science London, 1981.
    [15] C. L. Kane, “Materials science: Erasing electron mass,” Nature, vol. 438, pp. 168–170,
    2005.
    [16] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein
    paradox in graphene,” Nat. Phys., vol. 2, no. 9, pp. 620–625, 2006.
    [17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
    S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in
    graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
    [18] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum
    Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204,
    2005.
    [19] M. S. Dresselhaus, A. Jorio, and R. Saito, “Characterizing graphene, graphite, and carbon
    nanotubes by Raman spectroscopy,” Annu. Rev. Condens. Matter Phys., vol. 1, no. 1,
    pp. 89–108, 2010.
    [20] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, “Kohn anomalies and
    electron-phonon interactions in graphite,” Phys. Rev. Lett., vol. 93, no. 18, p. 185503,
    2004.
    [21] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc.
    London, Ser. A, vol. 362, no. 1824, pp. 2271–2288, 2004.
    [22] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Phonon linewidths
    and electron-phonon coupling in graphite and nanotubes,” Phys. Rev. B, vol. 73, no. 15,
    p. 155426, 2006.
    [23] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,
    D. Jiang, K. S. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene
    layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006.
    [24] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–
    phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, no. 1,
    pp. 47–57, 2007.
    [25] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon
    coupling in graphene,” Phys. Rev. Lett., vol. 98, no. 16, p. 166802, 2007.
    [26] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.
    Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, et al., “Monitoring dopants
    by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.,
    vol. 3, no. 4, pp. 210–215, 2008.
    [27] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito,
    “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem.
    Chem. Phys., vol. 9, no. 11, pp. 1276–1290, 2007.
    [28] N. Ferralis, R. Maboudian, and C. Carraro, “Evidence of structural strain in epitaxial
    graphene layers on 6H-SiC (0001),” Phys. Rev. Lett., vol. 101, no. 15, p. 156801, 2008.
    [29] L. Malard, M. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in
    graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009.
    [30] L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz,
    M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects
    in graphene via Raman spectroscopy at different excitation energies,” Nano Lett.,
    vol. 11, no. 8, pp. 3190–3196, 2011.
    [31] V. Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Cançado, C. A. Achete, and A. Jorio,
    “Raman signature of graphene superlattices,” Nano Lett., vol. 11, no. 11, pp. 4527–4534,
    2011.
    [32] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and
    A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning singleelectron
    transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2007.
    [33] A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater.,
    vol. 6, no. 11, pp. 858–861, 2007.
    [34] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene,”
    EPJ B, vol. 51, no. 2, pp. 157–160, 2006.
    [35] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, “Subpoissonian
    shot noise in graphene,” Phys. Rev. Lett., vol. 96, no. 24, p. 246802, 2006.
    [36] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phase-coherent
    transport in graphene quantum billiards,” Science, vol. 317, no. 5844, pp. 1530–1533,
    2007.
    [37] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional
    graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, p. 186806, 2007.
    [38] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak,
    and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev.
    Lett., vol. 100, no. 1, p. 016602, 2008.
    [39] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance
    limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4, pp. 206–
    209, 2008.
    [40] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Chargedimpurity
    scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381, 2008.
    [41] M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations in
    graphene,” Philos. Trans. R. Soc. London, Ser. A, vol. 366, no. 1863, pp. 195–204, 2008.
    [42] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended
    graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
    [43] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
    T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality
    graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
    [44] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures
    by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805, 2007.
    [45] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for
    graphene transport,” Proc. Natl. Acad. Sci., vol. 104, no. 47, pp. 18392–18397, 2007.
    [46] A. K. M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, and K. I. Bolotin, “Probing
    charge scattering mechanisms in suspended graphene by varying its dielectric environment,”
    Nat. Commun., vol. 3, p. 734, 2012.
    [47] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, “Tuning
    the effective fine structure constant in graphene: Opposing effects of dielectric screening
    on short- and long-range potential scattering,” Phys. Rev. Lett., vol. 101, no. 14,
    p. 146805, 2008.
    [48] N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller,
    K. L. Shepard, and J. Hone, “Chemical vapor deposition-derived graphene with electrical
    performance of exfoliated graphene,” Nano Lett., vol. 12, no. 6, pp. 2751–2756, 2012.
    [49] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene
    for device applications,” Nano Lett., vol. 7, no. 11, pp. 3394–3398, 2007.
    [50] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern,
    B. Holland, M. Byrne, Y. K. Gun’Ko, et al., “High-yield production of graphene by
    liquid-phase exfoliation of graphite,” Nat. Nanotechnol., vol. 3, no. 9, pp. 563–568, 2008.
    [51] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous
    dispersions of graphene nanosheets,” Nat. Nanotechnol., vol. 3, no. 2, pp. 101–105, 2008.
    [52] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M.
    Blighe, S. De, Z. Wang, I. T. McGovern, et al., “Liquid phase production of graphene
    by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc., vol. 131,
    no. 10, pp. 3611–3620, 2009.
    [53] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle,
    J. Hass, M. L. Sadowski, et al., “Epitaxial graphene,” Solid State Commun., vol. 143,
    no. 1, pp. 92–100, 2007.
    [54] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney,
    T. Ohta, S. A. Reshanov, J. Röhrl, et al., “Towards wafer-size graphene layers by atmospheric
    pressure graphitization of silicon carbide,” Nat. Mater., vol. 8, no. 3, pp. 203–
    207, 2009.
    [55] J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a
    nickel (111) surface: A surface phase transition,” Surf. Sci., vol. 43, no. 2, pp. 493–520,
    1974.
    [56] M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni (111),”
    Surf. Sci., vol. 82, no. 1, pp. 228–236, 1979.
    [57] T. A. Land, T. H. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation
    of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition,”
    Surf. Sci., vol. 264, no. 3, pp. 261–270, 1992.
    [58] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, “Two-dimensional Ir cluster
    lattice on a graphene Moiré on Ir (111),” Phys. Rev. Lett., vol. 97, no. 21, p. 215501, 2006.
    [59] P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater.,
    vol. 7, no. 5, pp. 406–411, 2008.
    [60] C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang,
    et al., “Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel
    cell,” Adv. Mater., vol. 20, no. 9, pp. 1644–1648, 2008.
    [61] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-
    Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable
    transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009.
    [62] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong,
    “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,”
    Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
    [63] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc,
    et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,”
    Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
    [64] G. H. Han, F. Gunes, J. J. Bae, E. S. Kim, S. J. Chae, H. J. Shin, J. Y. Choi, D. Pribat, and
    Y. H. Lee, “Influence of copper morphology in forming nucleation seeds for graphene
    growth,” Nano Lett., vol. 11, pp. 4144–4148, 2011.
    [65] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dyesensitized
    solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
    [66] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells
    with solution-processed graphene transparent electrodes,” Appl. Phys. Lett., vol. 92,
    p. 263302, 2008.
    [67] S. Sun, L. Gao, and Y. Liu, “Enhanced dye-sensitized solar cell using graphene-TiO photoanode
    prepared by heterogeneous coagulation,” Appl. Phys. Lett., vol. 96, p. 083113,
    2010.
    [68] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical
    deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid
    solar cells,” Small, vol. 6, no. 2, pp. 307–312, 2010.
    [69] E. W. Hill, A. Vijayaragahvan, and K. S. Novoselov, “Graphene sensors,” IEEE Sens. J.,
    vol. 11, no. 12, pp. 3161–3170, 2011.
    [70] F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett.,
    vol. 3, no. 13, pp. 1746–1753, 2012.
    [71] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett,
    G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, et al., “Graphene-silica composite thin
    films as transparent conductors,” Nano Lett., vol. 7, no. 7, pp. 1888–1892, 2007.
    [72] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of
    solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano,
    vol. 2, no. 3, pp. 463–470, 2008.
    [73] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and
    R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent
    conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
    [74] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.
    Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films for transparent
    electrodes,” Nat. Nanotechnol., vol. 5, no. 8, pp. 574–578, 2010.
    [75] Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, “Reduction of Fermi velocity in folded
    graphene observed by resonance Raman spectroscopy,” Phys. Rev. B, vol. 77, no. 23,
    p. 235403, 2008
    [76] Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. N. Sun, Y. Q. Wu,
    C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated
    circuit,” Science, vol. 332, pp. 1294–1297, 2011.
    [77] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C.
    Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry in
    graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2008.
    [78] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L.
    Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in
    graphene,” Phys. Rev. Lett., vol. 99, no. 24, p. 246803, 2007.
    [79] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee,
    “Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3
    dielectric,” Appl. Phys. Lett., vol. 94, no. 6, p. 062107, 2009.
    [80] C.-C. Lu, Y.-C. Lin, Z. Liu, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, “Twisting bilayer
    graphene superlattices,” ACS Nano, vol. 7, no. 3, pp. 2587–2594, 2013.
    [81] C.-H. Yeh, H. Medina, C.-C. Lu, K.-P. Huang, Z. Liu, K. Suenaga, and P.-W. Chiu, “Scalable
    graphite/copper bishell composite for high-performance interconnects,” ACS Nano,
    vol. 8, no. 1, pp. 275–282, 2014.
    [82] J.-F. Chang, Combined Magnetron Sputtering and ECR-CVD Deposition of Diamondlike
    Carbon Films. PhD thesis, Department of Electrical Engineering, National Sun
    Yat-sen University, 1992.
    [83] J. Robertson, G. Zhong, S. Hofmann, B. C. Bayer, C. S. Esconjauregui, H. Telg, and
    C. Thomsen, “Use of carbon nanotubes for vlsi interconnects,” Diam. Relat. Mater.,
    vol. 18, pp. 957–962, 2009.
    [84] K. J. Lee, M. Qazi, J. Kong, and A. P. Chandrakasan, “Low-swing signaling on monolithically
    integrated global graphene interconnects,” IEEE Trans. Electron Devices, vol. 57,
    pp. 3418–3425, 2010.
    [85] X. Y. Chen, D. Akinwande, K. J. Lee, G. F. Close, S. Yasuda, B. C. Paul, S. Fujita,
    J. Kong, and H. S. P. Wong, “Fully integrated graphene and carbon nanotube interconnects
    for gigahertz high-speed cmos electronics,” IEEE Trans. Electron Devices, vol. 57,
    pp. 3137–3143, 2010.
    [86] T. H. Yu, E. K. Lee, B. Briggs, B. Nagabhirava, and B. Yu, “Bilayer graphene/copper
    hybrid on-chip interconnect: A reliability study,” IEEE Trans. Nanotechnol., vol. 10,
    pp. 710–714, 2011.
    [87] D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with
    polymer ilds,” Thin Solid Films, vol. 308, pp. 523–528, 1997.
    [88] S. Yokogawa and H. Tsuchiya, “Effects of al doping on the electromigration performance
    of damascene cu interconnects,” J. Appl. Phys., vol. 101, p. 013513, 2007.
    [89] A. E. Kaloyeros and E. Eisenbraun, “Ultrathin diffusion barriers/liners for gigascale copper
    metallization,” Annu. Rev. Mater. Sci., vol. 30, pp. 363–385, 2000.
    [90] M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. H. Chen, J. C. Tsang, and P. Avouris,
    “Energy dissipation in graphene field-effect transistors,” Nano Lett., vol. 9, pp. 1883–
    1888, 2009.
    [91] A. D. Liao, J. Z. Wu, X. R. Wang, K. Tahy, D. Jena, H. J. Dai, and E. Pop, “Thermally
    limited current carrying ability of graphene nanoribbons,” Phys. Rev. Lett., vol. 106,
    p. 256801, 2011.
    [92] C. M. Tan and A. Roy, “Electromigration in ulsi interconnects,” Mat. Sci. Eng. R., vol. 58,
    pp. 3–75, 2007.
    [93] J. R. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectron.
    Reliab., vol. 39, pp. 1595–1602, 1999.
    [94] M. Wada, N. Matsunaga, and Y. Akimoto, “Semiconductor devices.”
    [95] J. H. Zhang, C. Goldberg, W. Kleemeier, and R. K. Sampson, “Copper interconnect
    structure having a graphene cap.”
    [96] C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim, H. J.
    Choi, S. H. Choe, M. H. Ham, and B. H. Lee, “Effects of multi-layer graphene capping
    on cu interconnects,” Nanotechnology, vol. 24, p. 115707, 2013.
    [97] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and
    J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor
    deposition,” Nano Lett., vol. 9, pp. 30–35, 2009.
    [98] C. C. Lu, C. H. Jin, Y. C. Lin, C. R. Huang, K. Suenaga, and P. W. Chiu, “Characterization
    of graphene grown on bulk and thin film nickel,” Langmuir, vol. 27, pp. 13748–13753,
    2011.
    [99] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni,
    I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of
    high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312–
    1314, 2009.
    [100] Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu,
    D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao,
    S. S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain
    boundaries in graphene grown by chemical vapour deposition,” Nat. Mater., vol. 10,
    pp. 443–449, 2011.
    [101] L. Sun, G. X. Qin, J. H. Seo, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “12-ghz thinfilm
    transistors on transferrable silicon nanomembranes for high-performance flexible
    electronics,” Small, vol. 6, pp. 2553–2557, 2010.
    [102] Z. C. Li, P. Wu, C. X. Wang, X. D. Fan, W. H. Zhang, X. F. Zhai, C. G. Zeng, Z. Y.
    Li, J. L. Yang, and J. G. Hou, “Low-temperature growth of graphene by chemical vapor
    deposition using solid and liquid carbon sources,” Acs Nano, vol. 5, pp. 3385–3390,
    2011.
    [103] G. Nandamuri, S. Roumimov, and R. Solanki, “Remote plasma assisted growth of
    graphene films,” Appl. Phys. Lett., vol. 96, p. 154101, 2010.
    [104] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo,
    A. Vanhulsel, and C. Van Haesendonck, “Synthesis of few-layer graphene via microwave
    plasma-enhanced chemical vapour deposition,” Nanotechnology, vol. 19, p. 305604,
    2008.
    [105] H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, “Graphene-based ambipolar rf mixers,”
    IEEE Electron Device Lett., vol. 31, pp. 906–908, 2010.
    [106] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson,
    and P.-W. Chiu, “Metal-free growth of nanographene on silicon oxides for transparent
    conducting applications,” Adv. Funct. Mater., vol. 22, no. 10, pp. 2123–2128, 2012.
    [107] I. Vlassiouk, M. Regmi, P. F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role
    of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” Acs
    Nano, vol. 5, pp. 6069–6076, 2011.
    [108] A. Behnam, L. Noriega, Y. Choi, Z. C. Wu, A. G. Rinzler, and A. Ural, “Resistivity scaling
    in single-walled carbon nanotube films patterned to submicron dimensions,” Appl.
    Phys. Lett., vol. 89, p. 093107, 2006.
    [109] Y. L. Kim, B. Li, X. H. An, M. G. Hahm, L. Chen, M. Washington, P. M. Ajayan, S. K.
    Nayak, A. Busnaina, S. Kar, and Y. J. Jung, “Highly aligned scalable platinum-decorated
    single-wall carbon nanotube arrays for nanoscale electrical interconnects,” Acs Nano,
    vol. 3, pp. 2818–2826, 2009.
    [110] J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and
    Z. F. Ren, “Atomic-scale imaging of wall-by-wall breakdown and concurrent transport
    measurements in multiwall carbon nanotubes,” Phys. Rev. Lett., vol. 94, p. 236802, 2005.
    [111] I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of
    the raman spectra of graphene and graphene multilayers,” Nano Lett., vol. 7, pp. 2645–
    2649, 2007.
    [112] I. Calizo, F. Miao, W. Bao, C. N. Lau, and A. A. Balandin, “Variable temperature raman
    microscopy as a nanometrology tool for graphene layers and graphene-based devices,”
    Appl. Phys. Lett., vol. 91, p. 071913, 2007.
    [113] L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang,
    Y. Huang, and X. F. Duan, “High-speed graphene transistors with a self-aligned nanowire
    gate,” Nature, vol. 467, pp. 305–308, 2010.
    [114] E. Pop, D. A. Mann, K. E. Goodson, and H. J. Dai, “Electrical and thermal transport in
    metallic single-wall carbon nanotubes on insulating substrates,” J. Appl. Phys., vol. 101,
    pp. –, 2007.
    [115] V. E. Dorgan, M. H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on
    sio2,” Appl. Phys. Lett., vol. 97, p. 082112, 2010.
    [116] M. H. Bae, Z. Y. Ong, D. Estrada, and E. Pop, “Imaging, simulation, and electrostatic
    control of power dissipation in graphene devices,” 2010.
    [117] V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-field electrical
    and thermal transport in suspended graphene,” Nano Lett., vol. 13, pp. 4581–4586, 2013.
    [118] W. Wu, S. H. Kang, J. S. Yuan, and A. S. Oates, “Thermal effect on electromigration performance
    for al/sio2, cu/sio2 and cu/low-k interconnect systems,” Solid State Electron.,
    vol. 45, pp. 59–62, 2001.
    [119] I. J. Bahl, Fundamentals of RF and Microwave Transistor Amplifiers. John Wiley &
    Sons, 2008.
    [120] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic
    performance limits of graphene devices on sio2,” Nat. Nanotechnol., vol. 3, pp. 206–
    209, 2008.
    [121] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation
    in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol.,
    vol. 3, pp. 654–659, 2008.
    [122] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.
    Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring
    dopants by raman scattering in an electrochemically top-gated graphene transistor,”
    Nat. Nanotechnol., vol. 3, pp. 210–215, 2008.
    [123] J. L. Xia, F. Chen, J. H. Li, and N. J. Tao, “Measurement of the quantum capacitance of
    graphene,” Nat. Nanotechnol., vol. 4, pp. 505–509, 2009.
    [124] Z. L. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. K. Hu, M. Ruan,
    J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. de Heer, “Record maximum
    oscillation frequency in c-face epitaxial graphene transistors,” Nano Lett., vol. 13,
    pp. 942–947, 2013.
    [125] D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. N. Xia, and P. Avouris, “Utilization
    of a buffered dielectric to achieve high field-effect carrier mobility in graphene
    transistors,” Nano Lett., vol. 9, pp. 4474–4478, 2009.
    [126] S. Y. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. D. Ye, C. W. Zhou, T. J. Marks,
    and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent
    and flexible electronics,” Nat. Nanotechnol., vol. 2, pp. 378–384, 2007.
    [127] M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire
    arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater.,
    vol. 6, pp. 379–384, 2007.
    [128] X. F. Duan, C. M. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman,
    “High-performance thin-film transistors using semiconductor nanowires and nanoribbons,”
    Nature, vol. 425, pp. 274–278, 2003.
    [129] C. Wang, J.-C. Chien, H. Fang, K. Takei, J. Nah, E. Plis, S. Krishna, A. M. Niknejad,
    and A. Javey, “Self-aligned, extremely high frequency iii-v metal-oxide-semiconductor
    field-effect transistors on rigid and flexible substrates,” Nano Lett., vol. 12, pp. 4140–
    4145, 2012.
    [130] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and
    E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science,
    vol. 290, pp. 2123–2126, 2000.
    [131] G. B. Blanchet, C. R. Fincher, and F. Gao, “Polyaniline nanotube composites: A highresolution
    printable conductor,” Appl. Phys. Lett., vol. 82, pp. 1290–1292, 2003.
    [132] G. X. Qin, H. C. Yuan, G. K. Celler, J. G. Ma, and Z. Q. Ma, “Influence of bending
    strains on radio frequency characteristics of flexible microwave switches using singlecrystal
    silicon nanomembranes on plastic substrate,” Appl. Phys. Lett., vol. 99, p. 153106,
    2011.
    [133] T. Kinkeldei, N. Munzenrieder, C. Zysset, K. Cherenack, Tro, x, and G. ster, “Encapsulation
    for flexible electronic devices,” IEEE Electron Device Lett., vol. 32, pp. 1743–
    1745, 2011.
    [134] C. Wang, J. C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey,
    “Extremely bendable, high-performance integrated circuits using semiconducting carbon
    nanotube networks for digital, analog, and radio-frequency applications,” Nano Lett.,
    vol. 12, pp. 1527–1533, 2012.
    [135] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and
    circuits with extreme bending stability,” Nat. Mater., vol. 9, pp. 1015–1022, 2010.
    [136] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
    intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, 2008.
    [137] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum,
    J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from
    graphene sheets,” Science, vol. 315, pp. 490–493, 2007.
    [138] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and
    P. Avouris, “100-ghz transistors from wafer-scale epitaxial graphene,” Science, vol. 327,
    pp. 662–662, 2010.
    [139] N. Petrone, I. Meric, J. Hone, and K. L. Shepard, “Graphene field-effect transistors with
    gigahertz-frequency power gain on flexible substrates,” Nano Lett., vol. 13, pp. 121–125,
    2012.
    [140] X. Wang, S. M. Tabakman, and H. Dai, “Atomic layer deposition of metal oxides on
    pristine and functionalized graphene,” J. Am. Chem. Soc., vol. 130, pp. 8152–8153, 2008.
    [141] Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, and Z. X. Shen, “Tunable stress
    and controlled thickness modification in graphene by annealing,” ACS Nano, vol. 2,
    pp. 1033–1039, 2008.
    [142] J. A. Robinson, M. LaBella, K. A. Trumbull, X. J. Weng, R. Cavelero, T. Daniels,
    Z. Hughes, M. Hollander, M. Fanton, and D. Snyder, “Epitaxial graphene materials integration:
    Effects of dielectric overlayers on structural and electronic properties,” ACS
    Nano, vol. 4, pp. 2667–2672, 2010.
    [143] M. J. Hollander, M. LaBella, Z. R. Hughes, M. Zhu, K. A. Trumbull, R. Cavalero, D. W.
    Snyder, X. J. Wang, E. Hwang, S. Datta, and J. A. Robinson, “Enhanced transport and
    transistor performance with oxide seeded high-kappa gate dielectrics on wafer-scale epitaxial
    graphene,” Nano Lett., vol. 11, pp. 3601–3607, 2011.
    [144] B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence
    of carrier mobility in graphene with hfo2 top dielectric,” Appl. Phys. Lett., vol. 97,
    p. 123105, 2010.
    [145] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, and P.-W. Chiu, “High mobility flexible
    graphene field-effect transistors with self-healing gate dielectrics,” ACS Nano, vol. 6,
    no. 5, pp. 4469–4474, 2012.
    [146] A. Badmaev, Y. C. Che, Z. Li, C. Wang, and C. W. Zhou, “Self-aligned fabrication of
    graphene rf transistors with t-shaped gate,” ACS Nano, vol. 6, pp. 3371–3376, 2012.
    [147] H. Zhou, J. H. Seo, D. M. Paskiewicz, Y. Zhu, G. K. Celler, P. M. Voyles, W. D. Zhou,
    M. G. Lagally, and Z. Q. Ma, “Fast flexible electronics with strained silicon nanomembranes,”
    Sci. Rep., vol. 3, p. 1291, 2013.
    [148] C. Sire, F. Ardiaca, S. Lepilliet, J. W. T. Seo, M. C. Hersam, G. Darnbrine, H. Happy,
    and V. Derycke, “Flexible gigahertz transistors derived from solution-based single-layer
    graphene,” Nano Lett., vol. 12, pp. 1184–1188, 2012.
    [149] J. Lee, T.-J. Ha, H. Li, K. N. Parrish, M. Holt, A. Dodabalapur, R. S. Ruoff, and D. Akinwande,
    “25 ghz embedded-gate graphene transistors with high-k dielectrics on extremely
    flexible plastic sheets,” ACS Nano, vol. 7, pp. 7744–7750, 2013.[150] H. Wang, A. Hsu, D. S. Lee, K. K. Kim, J. Kong, and T. Palacios, “Delay analysis
    of graphene field-effect transistors,” IEEE Electron Device Lett., vol. 33, pp. 324–326,
    2012.
    [151] A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity
    in deeply scaled nmos: How close to the thermal limit?,” IEEE Electron Device Lett.,
    vol. 22, pp. 95–97, 2001.
    [152] R. Cheng, J. W. Bai, L. Liao, H. L. Zhou, Y. Chen, L. X. Liu, Y. C. Lin, S. Jiang, Y. Huang,
    and X. F. Duan, “High-frequency self-aligned graphene transistors with transferred gate
    stacks,” Proc. Natl. Acad. Sci., vol. 109, pp. 11588–11592, 2012.
    [153] X. Hongtao, C. Sanabria, A. Chini, S. Keller, U. K. Mishra, and R. A. York, “A c-band
    high-dynamic range gan hemt low-noise amplifier,” IEEE Microwave Wireless Compon.
    Lett., vol. 14, pp. 262–264, 2004.
    [154] B. Godara and A. Fabre, “A new application of current conveyors: The design of wideband
    controllable low-noise amplifiers,” Radioengineering, vol. 17, pp. 91–100, 2008.
    [155] B. M. Liu, C. H. Wang, M. L. Ma, and S. Q. Guo, “An ultra-low-voltage and ultra-lowpower
    2.4 ghz lna design,” Radioengineering, vol. 18, pp. 527–531, 2009.
    [156] L. Liao, J. W. Bai, R. Cheng, H. L. Zhou, L. X. Liu, Y. Liu, Y. Huang, and X. F. Duan,
    “Scalable fabrication of self-aligned graphene transistors and circuits on glass,” Nano
    Lett., vol. 12, pp. 2653–2657, 2012.
    [157] Q. Z. Wan, C. H. Wang, and M. L. Ma, “A novel 2.4ghz cmos up-conversion currentmode
    mixer,” Radioengineering, vol. 18, pp. 532–536, 2009.
    [158] Q. Z. Wan and C. H. Wang, “A 0.18-mu m cmos high-performance up-conversion mixer
    for 2.4-ghz transmitter application,” Frequenz, vol. 64, pp. 14–18, 2010.
    [159] J. D. Chen and Z. M. Lin, “2.4 ghz high iip3 and low-noise down-conversion mixer,”
    IEEE Asia Pacific Conf., pp. 37–40, 2006.
    [160] “ADL5350 from Analog Devices; the datasheet is available at
    www.analog.com/static/imported-files/data sheets/ ADL5350.pdf.”
    [161] S. O. Koswatta, A. Valdes-Garcia, M. B. Steiner, Y. M. Lin, and P. Avouris, “Ultimate rf
    performance potential of carbon electronics,” IEEE Trans. Microw. Theory Tech., vol. 59,
    pp. 2739–2750, 2011.
    [162] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-
    W. Chiu, “Remote catalyzation for direct formation of graphene layers on oxides,” Nano
    Lett., vol. 12, no. 3, pp. 1379–1384, 2012.
    [163] X. Li, E. A. Barry, J. M. Zavada, M. Buongiorno Nardelli, and K. W. Kim, “Surface polar
    phonon dominated electron transport in graphene,” Appl. Phys. Lett., vol. 97, no. 23,
    p. 232105, 2010.
    [164] I.-T. Lin and J.-M. Liu, “Surface polar optical phonon scattering of carriers in graphene
    on various substrates,” Appl. Phys. Lett., vol. 103, no. 8, p. 081606, 2013.
    [165] C. Bungaro, K. Rapcewicz, and J. Bernholc, “Ab initio phonon dispersions of wurtzite
    aln, gan, and inn,” Phys Rev B, vol. 61, pp. 6720–6725–, 2000.
    [166] S. S. Ng, Z. Hassan, and H. Abu Hassan, “Experimental and theoretical studies of surface
    phonon polariton of aln thin film,” Appl. Phys. Lett., vol. 90, no. 8, p. 081902, 2007.
    [167] P. G. Emma and E. Kursun, “Is 3d chip technology the next growth engine for performance
    improvement?,” IBM J. Res. Develop., vol. 52, p. 541–552, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE