研究生: |
李旬政 Shiun-Jeng Li |
---|---|
論文名稱: |
分形高斯雜訊之維度估測及其生理訊號上之應用 Dimension Estimation of Fractional Gaussian Noise and Its Application to Physiological Signals |
指導教授: |
張 翔
Shyang Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 分形維度 、分形高斯雜訊 、頻譜分佈函數 、蕃椒素 、動態疾病 、效能評估 、排尿的共濟行為 |
外文關鍵詞: | Fractal dimension, fractional Gaussian noise, spectral distribution function, capsaicin, resiniferatoxin, dynamical diseases, performance evaluation, synergy of micturition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從生理系統擷取的節律性訊號經常具有記憶(memory)和長程相關(long-term correlation)的特質。依據它們的來源,這類的訊號可以用兩種數學模型來描述。若訊號是直接源自於神經與肌肉,則以離散分形高斯雜訊的模型來描述。若訊號是源自於神經與肌肉的累加性效果(cumulative effects),則以離散分形布朗運動(discrete-time fractional Brownian motion) 的模型來描述。也就是說,我們可以將訊號視為具有非整數維度的特質,而後使用分形維度來捕捉生理訊號強度的特徵。本估測方法是以離散分形高斯雜訊為理論。在實際訊號估測維度的過程中,需計算訊號的自相關函數與頻譜分佈函數(spectral distribution function, SDF),而後以勒讓德多項式(Legendre polynomials, LPs)為基底集來分解頻譜分佈函數。當資料長度增加時,估測子的標準差會減少。因此,此分形維度估測是統計學上相容的(statistically consistent)。當系統是正相關(positive correlation)時,估測子的標準差會較小。因此,此估測子特別適合用於探討共濟的生理功能。
因為使用了頻譜分佈函數,本估測方法可同時獲得分形維度與頻譜節律這兩個指標。當分形維度搭配上頻譜節律一起使用時,這兩個指標除了可用以區別正常鼠不同的排尿狀態,還可以用於研究脊髓損傷鼠用藥與否的共濟模式之探討。正常鼠的排尿過程中,EMG與CMG可以利用分形維度與頻譜特性明確地分為儲尿、排尿及排尿後三個階段,此為尿道外括約肌與膀胱逼尿肌共濟模式之常態特性,可做為比對藥物影響的依據。對於脊髓損傷鼠施加蕃椒素或RTX的研究,藉由排尿與儲尿期間EMG、CMG之分形維度與頻譜特性,發現其共濟模式已經與正常鼠不同。結果顯示,整體而言,以RTX的效果較佳,RTX產生弱共濟(weak synergy),而蕃椒素已不存有共濟(no synergy)的特徵。相信本研究提供的方法適用於評估其它共濟的生理功能,與評估藥物對具有動態疾病的動物的影響。
Rhythmic signals from physiological systems usually have memory and long term correlation. They can be modeled as fractional Brownian motion or fractional Gaussian noise depending on if the signals are derived from cumulative effects of nerves and muscles. That is, they can be treated as signals with fractional dimension and the value of its fractal dimension (FD) can be used to characterize the intensity of physiological signals. In this study, a novel method of dimension estimation based on the calculation of spectral distribution function (SDF) of discrete-time fractional Gaussian noise using Legendre polynomials (LPs) as basis set is proposed. The dimension estimation is statistically consistent and its standard deviation is small when the system is under positive correlation. Hence, this estimator is especially suitable for investigating synergic physiological functions. Due to SDF, two indicators, FD and spectral frequency, can be obtained simultaneously. These two indicators can be applied in illustrating the synergic behavior of detrusor of the bladder and external urethral sphincter (EUS) during micturition. Another application of these two indicators is the dynamical performance evaluation of the pharmacological effects on micturition in spinal-cord-injury (SCI) rats. Capsaicin and resiniferatoxin (RTX) are administered and their effects are compared. Results indicate that the synergy of micturition using RTX is better than that of capsaicin. It is believed that this methodology would be useful in the assessing of other synergic physiological functions and studying functional effects of pharmacology for animals under dynamical diseases.
Bibliography
[1] B. B. Mandelbrot, The fractal geometry of nature, San Francisco ; New York: W.H. Freeman, 1983.
[2] J. Feder, Fractals. New York and London: Plenum Press, 1988.
[3] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev., vol. 10, pp. 422–437, Oct. 1968.
[4] R. Voss, "The Science of Fractal Images," in Fractals in nature: From characterization to simulation, H. O. Peitqen and D. Saupe, Eds. New York: Springer-Verlag, 1988, pp. 21-70.
[5] K. Engelhart, B. Hudgins, P. A. Parker, and M. Stevenson, "Classification of the myoelectric signal using time-frequency based representations," Med Eng Phys, vol. 21, pp. 431-438, 1999.
[6] D. Ebert and B. Kuhnemann, "Breathing pattern influences the resting innervation tone of skeletal muscles," Klinische Neurophysiologie, vol. 32, pp. 30-37, 2001.
[7] I. Rodriguez-Carreno, A. Malanda-Trigueros, L. Gila-Useros, J. Navallas-Irujo, and J. Rodriguez-Falces, "Filter design for cancellation of baseline-fluctuation in needle EMG recordings," Comput Methods Programs Biomed, vol. 81, pp. 79-93, 2006.
[8] R. Ferenets, T. Lipping, A. Anier, V. Jantti, S. Melto, and S. Hovilehto, "Comparison of entropy and complexity measures for the assessment of depth of sedation," IEEE Trans Biomed Eng, vol. 53, pp. 1067-1077, 2006.
[9] R. Carvajal, N. Wessel, M. Vallverdu, P. Caminal, and A. Voss, "Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy," Computer Methods and Programs in Biomedicine, vol. 78, pp. 133-140, 2005.
[10] Y. C. Lai, I. Osorio, M. A. Harrison, and M. G. Frei, "Correlation-dimension and autocorrelation fluctuations in epileptic seizure dynamics," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 65, pp. 031921, 2002.
[11] J. Bhattacharya, H. Petsche, and E. Pereda, "Long-range synchrony in the gamma band: Role in music perception," Journal of Neuroscience, vol. 21, pp. 6329-6337, 2001.
[12] G. Henderson, E. Ifeachor, N. Hudson, C. Goh, N. Outram, S. Wimalaratna, C.D. Percio, F. Vecchio, “Development and Assessment of Methods for Detecting Dementia Using the Human Electroencephalogram,” IEEE Trans Biomed Eng, vol. 53, pp. 1557- 1568 ,2006.
[13] S. C. Liu and S. Chang, "Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification," IEEE Trans Image Process, vol. 6, pp. 1176-1184, 1997.
[14] O. I. Craciunescu, S. K. Das, J. M. Poulson, and T. V. Samulski, "Three-dimensional tumor perfusion reconstruction using fractal interpolation functions," IEEE Trans Biomed Eng, vol. 48, pp. 462-473, 2001.
[15] K. L. Chan, "Quantitative Characterization of Electron Micrograph Image Using Fractal Feature," IEEE Trans Biomed Eng, vol. 42, pp. 1033-1037, 1995.
[16] T. E. Southard, K. A. Southard, J. R. Jakobsen, S. L. Hillis, and C. A. Najim, "Fractal dimension in radiographic analysis of alveolar process bone," Oral Surg Oral Med Oral Pathol Oral Radiol Endod, vol. 82, pp. 569-576, 1996.
[17] S. Chang, S. T. Mao, S. J. Hu, W. C. Lin, and C. L. Cheng, "Studies of detrusor-sphincter synergia and dyssynergia during micturition in rats via fractional Brownian motion," IEEE Trans Biomed Eng, vol. 47, pp. 1066-73, 2000.
[18] Y. C. Chang and S. Chang, "A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion," IEEE Trans Signal Processing, vol. 50, pp. 554-559, 2002.
[19] S. Chang, S. J. Hu, and W. C. Lin, "Fractal dynamics and synchronization of rhythms in urodynamics of female Wistar rats," J Neurosci Methods, vol. 139, pp. 271-9, 2004.
[20] L. Glass and M. C. Mackey, From clocks to chaos : the rhythms of life. Princeton, N.J.: Princeton University Press, 1988.
[21] M. F. Campbell, P. C. Walsh, and A. B. Retik, Campbell's urology, 8th ed. Philadelphia, PA: Saunders, 2002.
[22] H. Gray, S. Standring, H. Ellis, and B. K. B. Berkovitz, Gray's anatomy : the anatomical basis of clinical practice, 39th ed. Edinburgh ; New York: Elsevier Churchill Livingstone, 2005.
[23] S. J. Shefchyk, "Sacral spinal interneurones and the control of urinary bladder and urethral striated sphincter muscle function," J Physiol, vol. 533, pp. 57-63, 2001.
[24] S. Chang, S. J. Li, M. J. Chiang, S. J. Hu, M. C. Hsyu, “Fractal dimension estimation via spectral distribution function and its application to physiological signals,” IEEE Trans Biomed Eng, 2007 (to be published).
[25] M. N. Kruse, A. L. Belton, and W. C. de Groat, "Changes in bladder and external urethral sphincter function after spinal cord injury in the rat," Am J Physiol, vol. 264, pp. R1157-1163, 1993.
[26] H. S. Shaker, L. M. Tu, M. Kalfopoulos, M. Hassouna, S. Dion, and M. Elhilali, "Hyperreflexia of the urinary bladder: possible role of the efferent function of the capsaicin sensitive primary afferents," J Urol, vol. 160, pp. 2232-2239, 1998.
[27] A. Lecci, S. Giuliani, M. Tramontana, M. Criscuoli, and C. A. Maggi, "Multiple sites of action in the inhibitory effect of nociceptin on the micturition reflex," J Urol, vol. 163, pp. 638-645, 2000.
[28] M. B. Chancellor and W. C. de Groat, "Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder," J Urol, vol. 162, pp. 3-11, 1999.
[29] C. L. Cheng, C. Y. Chai, and W. C. de Groat, "Detrusor-sphincter dyssynergia induced by cold stimulation of the urinary bladder of rats," Am J Physiol, vol. 272, pp. R1271-82, 1997.
[30] S. Seki, K. Sasaki, M. O. Fraser, Y. Igawa, O. Nishizawa, M. B. Chancellor, W. C. de Groat, and N. Yoshimura, "Immunoneutralization of nerve growth factor in lumbosacral spinal cord reduces bladder hyperreflexia in spinal cord injured rats," J Urol, vol. 168, pp. 2269-74, 2002.
[31] C. J. Fowler, R. O. Beck, S. Gerrard, C. D. Betts, and C. G. Fowler, "Intravesical capsaicin for treatment of detrusor hyperreflexia," J Neurol Neurosurg Psychiatry, vol. 57, pp. 169-173, 1994.
[32] C. L. Cheng, C. P. Ma, and W. C. de Groat, "Effect of capsaicin on micturition and associated reflexes in chronic spinal rats," Brain Res, vol. 678, pp. 40-48, 1995.
[33] M. Lazzeri, M. Spinelli, P. Beneforti, A. Zanollo, and D. Turini, "Intravesical resiniferatoxin for the treatment of detrusor hyperreflexia refractory to capsaicin in patients with chronic spinal cord diseases," Scand J Urol Nephrol, vol. 32, pp. 331-4, 1998.
[34] W. C. de Groat, J. D. Downie, R. M. Levin, A. T. Long Lin, J. F. B. Morrison, O. Nishizawa, W. D. Steers, and K. B. Thor, “Basic neurophysiology and neuropharmacology,” in Incontinence, P. Abrams, S. Khoury, and A. Wein, Eds. Plymouth, UK: Plymouth Distributors Ltd, 1999, pp. 105–155.
[35] C. L. Cheng and W. C. de Groat, "The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats," Exp Neurol, vol. 187, pp. 445-454, 2004.
[36] M. de Seze, L. Wiart, P. A. Joseph, J. P. Dosque, J. M. Mazaux, and M. Barat, "Capsaicin and neurogenic detrusor hyperreflexia: a double-blind placebo-controlled study in 20 patients with spinal cord lesions," Neurourol Urodyn, vol. 17, pp. 513-523, 1998.
[37] C. J. Fowler, "Intravesical treatment of overactive bladder," Urology, vol. 55, pp. 60-64; discussion 66, 2000.
[38] J. L. Doob, Stochastic processes. New York: Wiley, 1953.
[39] E. Wong and B. Hajek, Stochastic processes in engineering systems. New York: Springer-Verlag, 1985.
[40] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain. vol. 19. American Mathematical Society Providence, R. I., 1934.
[41] A. M. Yaglom, An introduction to the theory of stationary random functions; Rev. English Dover ed. New York: Dover Pub., 1973.
[42] A. B. Tucker, Fundamentals of computing. New York: McGraw-Hill, 1992.