簡易檢索 / 詳目顯示

研究生: 王駿宸
Wang, Chun-Chen
論文名稱: 高離子濃度DNA感測之 CMOS TiN延伸電極電晶體
CMOS TiN-based extended-gate field-effect transistors for DNA detection in high-ionic-strength conditions
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 鄭裕庭
Cheng, Yu-Ting
方維倫
Fang, Wei-Leun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 73
中文關鍵詞: 延伸電晶體氮化鈦
外文關鍵詞: extended gate FET, TiN
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當今科技快速進步的時代,半導體產業蓬勃發展,使得晶片在我們的日常生活中扮演著不可或缺的角色。這種影響尤其體現在感測器技術的廣泛應用上。無論是加速度計、觸覺感測器還是光感測器,這些微小但功能強大的裝置無處不在,默默地為我們提供各種重要數據和信息。
    近年來,隨著人們對健康和醫療的關注日益增加,生醫感測器的重要性也逐漸凸顯。此類感測器能夠監測人體各項生理指標,為醫療診斷和健康管理提供寶貴的數據支持。歸功於現代科技的進步使得許多生醫感測器能夠和傳統CMOS製程相整合不僅大大縮小了晶片的體積,還顯著提高了感測的精確度和靈敏度。技術的相容為醫療設備的微型化和智能化開闢了新的道路,使得更多便攜、高效的醫療監測設備成為可能。從而為患者提供更便利、更準確的健康監測服務,同時也為醫療專業人員提供了更多的診斷和治療工具。
    本研究以氮化鈦為感測層之延伸電極場效電晶體( TiN-based Extended-Gate Field Effect Transistors, EGFET)來進行DNA與pH值感測之探討,總陣列數為4 × 4個EGFET,將量測不同濃度之pH緩衝溶液以及於不同濃度磷酸鹽緩衝水溶液中量測B型肝炎病毒DNA分子。
    在不同pH值緩衝溶液下,本研究量測到pH值的最高感測度為52.6 mV/pH。而B型肝炎DNA分子的量測,本研究感測10-16 M~10-11 M的DNA分子,於1X PBS,溶液下,TiN EGFET的最高臨界電壓變化為30.45 mV/〖/log〗_10[DNA];於0.01X PBS溶液下,TiN EGFET的臨界電壓變化為31.82 mV/〖/log〗_10[DNA]。


    In today's era of rapid technological advancement, the semiconductor industry has flourished, making integrated circuits an indispensable part of our daily lives. This influence is particularly evident in the widespread application of sensor technologies. Whether they are accelerometers, tactile sensors, or optical sensors, these tiny yet powerful devices are ubiquitous, silently providing us with various crucial data and information.
    In recent years, with increasing attention to health and medical care, the importance of biomedical sensors has become increasingly prominent. These sensors can monitor various physiological indicators of the human body, providing valuable data support for medical diagnosis and health management. Thanks to modern technological advances, many biomedical sensors can now be integrated with traditional CMOS manufacturing processes, which not only significantly reduces chip size but also notably improves sensing precision and sensitivity. This technological compatibility has paved the way for the miniaturization and intelligence of medical devices, making more portable and efficient medical monitoring equipment possible. This development provides patients with more convenient and accurate health monitoring services while offering healthcare professionals additional diagnostic and treatment tools.
    This research investigates DNA and pH sensing using TiN-based Extended-Gate Field Effect Transistors (EGFET), featuring a sensing array of 4×4 EGFETs, to measure various concentrations of pH buffer solutions and detect Hepatitis B virus DNA molecules in different concentrations of phosphate-buffered saline solutions. Under different pH buffer solutions, this study measured a maximum pH sensitivity of 52.6 mV/pH. For Hepatitis B DNA molecule measurements, the research detected DNA molecules in concentrations ranging from 10-16 M to 10-11 M. In 1X PBS solution, the TiN EGFET showed a maximum threshold voltage change of 30.45 mV/[DNA], while in 0.01X PBS solution, the threshold voltage change was 31.82 mV/[DNA].

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 3 第二章 設計與模擬 5 2-1 感測電路設計 5 2-1-1 電路架構 5 (一) EGFET與積分電容電路 7 (二)取樣保值電路 9 (三)OP amps 10 (四)二對四解碼器電路 18 2-1-2 EGFET等效電路模型與工作原理 21 2-1-3 EGFET感測電路模擬結果 26 第三章 生物醫學實驗介紹 36 3-1 待測生物分子介紹-DNA 36 3-2 DNA表面化學修飾步驟 38 第四章 量測結果與分析 41 4-1 量測設備介紹 41 4-2 氮化鈦感測層製備 45 4-2-1 延伸電極金屬濕蝕刻 45 4-2-2 材料分析結果 49 4-3 晶片架構與PCB版封裝 50 4-4 量測結果 54 4-4-1 去離子水環境量測結果 54 4-4-2 不同濃度pH值緩衝液中的訊號量測 56 4-4-3 不同濃度PBS緩衝液中的訊號反應 59 4-4-4 DNA分子感測實驗 60 第一次target DNA感測 63 第二次target DNA感測 65 第三次target DNA感測 66 第五章 結論與未來工作 69 參考文獻 71

    [1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed Eng, vol. 17, no. 1, pp. 70-1 , 1970.
    [2] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate,” Sensors and Actuators B: Chemical, vol. 71, no. 1-2, pp. 106-111, 2000.
    [3] C. Hazarika, S. Neroula, and S. Sharma, “Long term drift observed in ISFET due to the penetration of H+ ions into the oxide layer,” in Pattern Recognition and Machine Intelligence: 8th International Conference, 2019
    [4] J. R. Zhang, “All CMOS Integrated 3D-Extended Metal Gate ISFETs for pH and Multi-Ion (Na+, K+, Ca 2+) sensing,“ in IEEE International Electron Devices Meeting (IEDM), 2018.
    [5] T. F. Lu, “Characterization of K+ and Na+-sensitive membrane fabricated by CF4 plasma treatment on hafnium oxide thin films on ISFET,“ Journal of The Electrochemical Society, vol. 158, no. 4, p. J91, 2011.
    [6] P. Bergveld, “The operation of an ISFET as an electronic device,“ Sensors and Actuators, vol. 1, pp. 17-29, 1981.
    [7] A. Ganguli, Y. Watanabe, M. T. Hwang, J. C. Huang, and R. Bashir, “Robust label-free microRNA detection using one million ISFET array,“ Biomedical microdevices, vol. 20, pp. 1-10, 2018.
    [8] D. C. Li, P. H. Yang, and M. S. C. Lu, “CMOS Open-Gate Ion-Sensitive Field-Effect Transistors for Ultrasensitive Dopamine Detection,” IEEE Trans. on Electron Devices, vol. 57, no. 10, pp. 2761-2767, 2010.
    [9] S. R. Chang, C. H. Chang, J. S. Lin, S. C. Lu, Y. T. Lee, S. R. Yeh, and H. Chen, “Die-level, post-CMOS processes for fabricating open-gate, field-effect biosensor arrays with on-chip circuitry,” Journal of Micromechanics and Microengineering, vol. 18, no. 11, 2008.
    [10] J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology,” Sensors and Actuators B-Chemical, vol. 57, no. 1-3, pp. 56-62, 1999.
    [11] M. Sohbati, and C. Toumazou, “Dimension and shape effects on the ISFET performance,” IEEE Sensor Journal. vol. 15, no. 3, pp. 1670-1679, 2015.
    [12] B. Palan, F. V. Santos, J. M. karam, B. Courtois, and M. Husak, “New ISFET sensor interface circuit for biomedical applications,” Sensors and Actuators B, vol. 57, pp. 63-68, 1999.
    [13] S. Sinha, R. Rathore, S. K. Sinha, R. Sharma, R. Mukhiya, and V. K. Khanna, “Modeling and simulation of ISFET microsensor,” ISSS International Conference on Smart Materials, pp. 14-27, 2014.
    [14] Y. L. Chin, J. C. Chou, Z. C. Lei, T. P. Sun, W. Y. Chung, and S. K. Hsiung, “Titanium Nitride membrane application to extended gate Field effect transistor PH sensor using VLSI technology,” Japanese Journal of Applied Physics, 40(11R), 6311, 2001.
    [15] S. Purushothaman, C. Toumazou and J. Georgiou, “Towards fast solid state DNA sequencing,” IEEE International Symposium on Circuits and Systems, pp.169–172, 2002.
    [16] S. Purushothaman, C. Toumazou, C. P. Ou, “Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor,” Sensors and Actuators B: Chemical, vol. 114, pp. 964–968, 2006.
    [17] D. Garner, H. Bai, P. Georgiou, T. Constandinou, S. Reed, L. Shepherd, W. Wong, K. Lim, and C. Toumazou, “A multichannel DNA SoC for rapid point-of care gene detection,” IEEE Conference on Solid-State Circuits, pp. 492–493, 2010.
    [18] J. S. Schultz, S. Mansouri and I. J. Goldstein, “Affinity glucose sensor,” Diabetes Care, vol. 5, pp. 245-253, 1982.
    [19] A.V. Matveyenko, C.M. Donovan, “Metabolic sensors mediate hypoglycemic detection at the portal vein, “ Diabetes, 55 , pp. 1276-1282, 2006.
    [20] B. H. van der Schoot and P. Bergveld, “ISFET-based enzyme sensors,” Biosens., vol. 3, pp. 161-186, 1987/88.
    [21] S. Sheibani, L. Capua, S. Kamaei, S. S. A. Akbari, J. Zhang, H. Guerin, and A. M. Ionescu, “Extended gate field-effect-transistor for sensing cortisol stress hormone,” Commun Mater, vol. 2, no. 1, pp. 10, 2021.
    [22] X. Xu, P. Clement, J. Eklof-Osterberg, N. Kelley-Loughnane, K. Moth-Poulsen, J. L. Chavez, and M. Palma, “Reconfigurable Carbon Nanotube Multiplexed Sensing Devices,” in Nano Letters, vol. 18, pp. 4130-4135, 2018.
    [23] M. Duan, X. Zhong, X. Zhao, O. M. El-Agnaf, Y. -K. Lee and A. Bermak, “An Optical and Temperature Assisted CMOS ISFET Sensor Array for Robust E. Coli Detection,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 3, pp. 497-508, 2021.
    [24] C. Xu, G. Qiu, S. P. Ng, and C. M. L. Wu, “Nanostructured titanium nitride for highly sensitive localized surface plasmon resonance biosensing,” Ceramics International, vol. 46, pp. 20993-20999, 2020.
    [25] C. Xu, G. Qiu, S. P. Ng, and C. M. L. Wu, “Label-free surface plasmon resonance biosensing with titanium nitride thin film,” Biosensors and Bioelectronics, vol. 106, pp 129-135, 2018.
    [26] G. Qiu, A. Thakur, C. Xu, S. P. Ng, Y. Lee, and C. M. L. Wu, “Detection of Glioma‐Derived Exosomes with the Biotinylated Antibody‐Functionalized Titanium Nitride Plasmonic Biosensor,” Advanced Functional Materials, vol. 29, pp. 1806761, 2018.
    [27] G. Y. Xu, J. Abbott, and D. Ham, “Optimization of CMOS-ISFET-Based Biomolecular Sensing: Analysis and Demonstration in DNA Detection,” IEEE Trans. on Electron Devices, vol. 63, no. 8, pp. 3249-3256, 2016.
    [28] P. Georgiou, and C. Toumazou, “ISFET characteristics in CMOS and their application to weak inversion operation,” Sensors and Actuators B-Chemical, vol. 143, no. 1, pp. 211-217, 2009.
    [29] M. Sohbati and C. Toumazou, “Dimension and shape effects on the ISFET performance,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1670-1679, 2014.
    [30] L. Bousse, N. F. Derooij, and P. Bergveld, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface,” IEEE Trans. on Electron Devices, vol. 30, no. 10, pp. 1263-1270, 1983.
    [31] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma, and F. P. Widdershoven, “Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays,” Nature Nanotechnology, vol. 10, no. 9, pp. 791-795, 2015.
    [32] Y. W. Chen, and M. S. C. Lu, “Highly sensitive DNA detection beyond the debye screening length using CMOS field effect transistors,” IEEE Electron Device Letters, vol. 42, no. 8, pp. 1220-1223, Aug, 2021.
    [33] L. S. Tseng, P. H. Lai, C. M. Yang and M. S. C. Lu , “Sensing beyond the debye length: development of a 32 × 32 CMOS DNA sensor array,” in IEEE Sensors Letters, vol. 7, no. 3, pp. 1-4, 2023.

    QR CODE