簡易檢索 / 詳目顯示

研究生: 羅敏嘉
Lo, Min-Chia
論文名稱: 發展人造神經網路裝置
Development of Artificial Neuronal Network Devices
指導教授: 張兗君
Chang, Yen-Chung
口試委員: 張兗君
Chang, Yen-Chung
周姽嫄
Chow, Wei-Yuan
周韻家
Chou, Yun-Chia
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 神經網路微壓印技術微電極光微影術免疫螢光染色
外文關鍵詞: PDMS, neuronal network, SU-8, microcontact printing, photolithography
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微壓印技術常被用於建立神經網路,在培養基板轉印出特定分子圖形,就能夠侷限神經細胞只貼附在培養基板的特定分子圖案區域,之後神經突起生長也會遵循此圖案形式。在本實驗中發展的方法學有別於以往的微壓印技術,試著控制細胞本體只座落在圖案的特定位置上,進而生長成神經網路。利用光學顯影技術製作一系列不同規格大小的微米等級的模仁,再由這些模仁翻製出我們所需的PDMS模板。此模板頂部具有64個圓孔,以8 × 8陣列形式排列,底部則為7 × 7方形網狀溝槽,上下相通。將PDMS模板經由電漿預處理之後貼附到玻片上,加入PLL使其流入孔洞而在玻片上建立方形網狀圖案,PDMS模板侷限神經細胞只能掉落在特定的位置上,並沿著PLL圖案生長形成神經網路。投入細胞後將裝置送去離心以縮短細胞掉落至節點的時間,避免細胞聚集降低具有神經細胞的節點數百分比。雖然我們將裝置拿去離心試圖提升細胞掉落至節點的機會(occupancy rate),但始終無法克服障礙,平均occupancy rate大約只有50%。所以另外測試較大孔徑(約100 μm)PDMS模板,發現有細胞掉落且數量非常多,最後返回檢視PDMS模板的結構,以掃描式電子顯微鏡觀察其縱切面結構,發現兩個問題: (1)PDMS模板脫模之後,其實際細胞通道孔徑大小僅有9 μm,比原先所設計的表面孔徑(約60 μm)小得許多。(2) PDMS模板細胞通道約200 μm的高深度,因PDMS柔軟且具有彈性,無法支撐如此高深寬比的結構,相鄰的PDMS互相黏合,而導致細胞掉落至節點的通道被封住,以上兩點為細胞occupancy rate始終無法提升的主因。藉由此方法學的建立,我們將能夠利用活體影像觀察、免疫螢光染色以及電生理紀錄去研究神經網路的發展,希望未來修正模仁結構,再與微電極陣列共同應用,進而去了解神經網路對於各種形式的訊號輸入所產生的生化或是生理反應。


    英文摘要------------------------------------------------i 中文摘要------------------------------------------------iii 謝誌---------------------------------------------------iv 目錄---------------------------------------------------v 壹、緒論------------------------------------------------1 貳、材料與方法 一、實驗材料 (一)、老鼠的育種------------------------------------------9 (二)、藥品-----------------------------------------------9 (三)、實驗儀器-------------------------------------------10 二、實驗方法 (一)SU-8微結構的製作-------------------------------------11 (二)PDMS模板的設計與製作----------------------------------13 (三)細胞培養分隔框的設計與製作------------------------------13 (四)加壓膜板用之PDMS長方體的製作---------------------------14 (五)PLL網狀圖案的建立------------------------------------14 (六)加高細胞培養分隔框------------------------------------15 (七)初代海馬迴神經細胞培養--------------------------------15 (八)神經細胞離心裝置-------------------------------------17 (九)免疫螢光染色----------------------------------------17 (十)統計方法與分析---------------------------------------18 參、結果 一、建立格狀神經網路培養基板-----------------------------19 二、離心方法增加細胞掉落至節點的機會(Occupancy rate)-------20 三、確認神經網路型態及其功能完整性------------------------21 四、神經細胞掉入節點的數量(occupancy rate)--------------23 肆、討論 一、格狀神經網路之潛在發展性-----------------------------25 二、探討體外培養神經網路的困難------------------------------25 三、神經網路型態與突觸的形成--------------------------------27 四、神經細胞掉入節點的數量(occupancy rate)------------------28 伍、圖 圖一、方形神經網路培養流程-------------------------------31 圖二、掃描式電子顯微鏡觀察SU-8模仁結構圖-------------------33 圖三、裝置離心後海馬迴神經細胞降落至節點的情形(Occupancy rate)。 ----------------------------------------------------35 圖四、螢光染色觀察體外培養第5天神經網路樹突與軸突分布情形--------36 圖五、螢光染色觀察體外培養第5天神經網路突觸形成情形------------37 圖六、螢光染色觀察體外培養第10天神經網路樹突與軸突分布情形-----39 圖七、螢光染色觀察體外培養第10天神經網路突觸形成情形----------41 圖八、螢光染色觀察體外培養第20天神經網路突觸形成情形------------43 圖九、體外第1天海馬迴神經細胞掉落至100 μm孔徑大小PDMS模板 情形------------------------------------------45 圖十、明視野顯微鏡觀察PDMS模板表面孔徑---------------------46 圖十一、掃描式電子顯微鏡觀察PDMS模板切面結構-----------------48 陸、表 表一、統計SU-8模仁各局部結構(圓柱、矮牆)大小----------------50 柒、附錄 附錄一、神經細胞培養裝置離心流程圖-------------------------51 捌、參考文獻-----------------------------------------------52

    Bhattacharya, S., A. Datta, J. M. Berg and S. Gangopadhyay (2005). "Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength." Microelectromechanical Systems, Journal of 14(3): 590-597.

    Boehler, M. D., S. S. Leondopulos, B. C. Wheeler and G. J. Brewer (2012). "Hippocampal networks on reliable patterned substrates." J Neurosci Methods 203(2): 344-353.

    Branch, D. W., B. C. Wheeler, G. J. Brewer and D. E. Leckband (2000). "Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine." IEEE Trans Biomed Eng 47(3): 290-300.

    Chance, F. S., S. B. Nelson and L. F. Abbott (1998). "Synaptic depression and the temporal response characteristics of V1 cells." J Neurosci 18(12): 4785-4799.

    Chang, J. C., G. J. Brewer and B. C. Wheeler (2003). "A modified microstamping technique enhances polylysine transfer and neuronal cell patterning." Biomaterials 24(17): 2863-2870.

    Clark, P., P. Connolly, A. S. Curtis, J. A. Dow and C. D. Wilkinson (1990). "Topographical control of cell behaviour: II. Multiple grooved substrata." Development 108(4): 635-644.

    Corey, J. (2003). "Substrate patterning: an emerging technology for the study of neuronal behavior." Experimental Neurology 184: 89-96.

    Curtis, A. and C. Wilkinson (1997). "Topographical control of cells." Biomaterials 18(24): 1573-1583.

    Dillon, C. and Y. Goda (2005). "The actin cytoskeleton: integrating form and function at the synapse." Annu Rev Neurosci 28: 25-55.

    Edwards, F. A., A. Konnerth and B. Sakmann (1990). "Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study." J Physiol 430: 213-249.

    Esch, T., V. Lemmon and G. Banker (1999). "Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons." J Neurosci 19(15): 6417-6426.

    Heller, D. A., V. Garga, K. J. Kelleher, T. C. Lee, S. Mahbubani, L. A. Sigworth, T. R. Lee and M. A. Rea (2005). "Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces." Biomaterials 26(8): 883-889.

    Herculano-Houzel, S. (2009). "The human brain in numbers: a linearly scaled-up primate brain." Front Hum Neurosci 3: 31.

    Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities." Proc Natl Acad Sci U S A 79(8): 2554-2558.

    Hu, J. Y., O. Baussi, A. Levine, Y. Chen and S. Schacher (2011). "Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli." J Neurosci 31(24): 8841-8850.

    Hwang, H., Kang, G., Yeon, J. H., Nam, Y., Park, J. K. (2009). "Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells." Lab on a Chip 9: 167–170.

    Jang, K.-J., M. S. Kim, D. Feltrin, N. L. Jeon, K.-Y. Suh and O. Pertz (2010). "Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth." PLoS ONE 5(12): e15966.

    Jun, S.B., M. Hynd, N. Dowell-Mesfin, K. Smith, J. Turner, W. Shain and S. June Kim (2005). "Synaptic connectivity of a low density patterned neuronal network produced on the poly-L-lysine stamped microelectrode array." Conf Proc IEEE Eng Med Biol Soc 7: 7604-7607.

    Jun, S. B., Hynd, M. R., Dowell-Mesfin, N., Smith, K. L., Turner, J. N., Shain, W., Kim, S. J. (2007). "Low-Density Neuronal Networks Cultured using Patterned Poly-LLysine on Microelectrode Arrays." J Neurosci Methods 160(2): 317–326.

    Jungblut, M., W. Knoll, C. Thielemann and M. Pottek (2009). "Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording." Biomed Microdevices 11(6): 1269-1278.

    Kaplan, M. P., K. S. Wilcox and M. A. Dichter (2003). "Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture." Synapse 50(1): 41-52.

    Koh, K.S., Chin, J., Chia, J., Chiang, C.L. (2012). "Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and its Swelling Effect" Micromachines 3: 427-441.

    Lauer, L., S. Ingebrandt, K. Scholl and A. Offenhauer (2001). "Aligned microcontact printing of biomolecules on microelectronic device surfaces." Biomedical Engineering, IEEE Transactions on 48(7): 838-842.

    Lauer, L., C. Klein and A. Offenhausser (2001). "Spot compliant neuronal networks by structure optimized micro-contact printing." Biomaterials 22(13): 1925-1932.

    Li, N., A. Tourovskaia and A. Folch (2003). "Biology on a chip: microfabrication for studying the behavior of cultured cells." Crit Rev Biomed Eng 31(5-6): 423-488.

    Mai, J., Fok, L., Gao, H., Zhang, X., Poo, M. M. (2009). "Axon Initiation and Growth Cone Turning on Bound Protein Gradients." The Journal of Neuroscience 29(23):7450 –7458.

    McDonald, J. C. and G. M. Whitesides (2002). "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices." Acc Chem Res 35(7): 491-499.

    Millet, L. J. and Gillette, M. U. (2012). "Over a century of neuron culture: From the Hanging drop to Microfluidic devices.” Yale Journal of Biology and Medicine 85: 501-521

    Nam, Y., J. C. Chang, B. C. Wheeler and G. J. Brewer (2004). "Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures." IEEE Trans Biomed Eng 51(1): 158-165.

    Novak, J. L. and B. C. Wheeler (1988). "Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array." J Neurosci Methods 23(2): 149-159.

    Rogers, J. A. and R. G. Nuzzo (2005). "Recent progress in soft lithography." Materials Today 8(2): 50-56.

    Shein-Idelson, M., Ben-Jacob, E., Hanein, Y. (2011). "Engineered neuronal circuits: a new platform for studying the role of modular topology." Frontiers in Neuroscience Volume 4 , Article 10.

    Scholl, M., C. Sprossler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll and A. Offenhausser (2000). "Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces." J Neurosci Methods 104(1): 65-75.

    Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides and D. E. Ingber (1994). "Engineering cell shape and function." Science 264(5159): 696-698.

    Stenger, D. A., J. J. Hickman, K. E. Bateman, M. S. Ravenscroft, W. Ma, J. J. Pancrazio, K. Shaffer, A. E. Schaffner, D. H. Cribbs and C. W. Cotman (1998). "Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons." J Neurosci Methods 82(2): 167-173.

    Suzuki, I., Y. Sugio, H. Moriguchi, Y. Jimbo and K. Yasuda (2004). "Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture." J Nanobiotechnology 2(1): 7.

    Taketani, M., M. Baudry, J. Whitson, D. Kubota, K. Shimono, Y. Jia and M. Taketani (2006). Multi-Electrode Arrays: Enhancing Traditional Methods and Enabling Network Physiology. Advances in Network Electrophysiology, Springer US: 38-68.

    Thomas, C. A., Jr., P. A. Springer, G. E. Loeb, Y. Berwald-Netter and L. M. Okun (1972). "A miniature microelectrode array to monitor the bioelectric activity of cultured cells." Exp Cell Res 74(1): 61-66.

    Vogt, A. K., L. Lauer, W. Knoll and A. Offenhausser (2003). "Micropatterned substrates for the growth of functional neuronal networks of defined geometry." Biotechnol Prog 19(5): 1562-1568.

    Vogt, A. K., G. Wrobel, W. Meyer, W. Knoll and A. Offenhausser (2005). "Synaptic plasticity in micropatterned neuronal networks." Biomaterials 26(15): 2549-2557.

    Wang, S., Wong Po Foo, C., Warrier, A., Poo, M. M., Heilshorn, S. C., Zhang, X. (2009). "Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments." Biomed Microdevices 11:1127–1134.

    Wheeler, B. C. and G. J. Brewer (2010). "Designing Neural Networks in Culture: Experiments are described for controlled growth, of nerve cells taken from rats, in predesigned geometrical patterns on laboratory culture dishes." Proc IEEE Inst Electr Electron Eng 98(3): 398-406.

    Wyart, C., C. Ybert, L. Bourdieu, C. Herr, C. Prinz and D. Chatenay (2002). "Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces." J Neurosci Methods 117(2): 123-131.

    Xia, Y. and G. M. Whitesides (1998). "SOFT LITHOGRAPHY." Annual Review of Materials Science 28(1): 153-184.

    Younan Xia and George M. Whitesides (1998). " SOFT LITHOGRAPHY " Annual Review of Materials Science 28:153–84.

    Zeng, H. C., Y. C. Ho, S. T. Chen, H. I. Wu, H. W. Tung, W. L. Fang and Y. C. Chang (2007). "Studying the formation of large cell aggregates in patterned neuronal cultures." J Neurosci Methods 165(1): 72-82.

    Zhang, W. and D. L. Benson (2001). "Stages of synapse development defined by dependence on F-actin." J Neurosci 21(14): 5169-5181.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE