簡易檢索 / 詳目顯示

研究生: 李紀穎
Lee, Chi-Ying
論文名稱: 應用於無線測試系統的高面積效率內崁式二進制頻移鍵控發射器之設計
Design of an Area-Efficient Embedded BFSK Transmitter for Wireless Test Systems
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 吳誠文
Wu, Cheng-Wen
張彌彰
Chang, Mi-Chang
鄭國興
Cheng, Kuo-Hsing
郭建男
Kuo, Chien-Nan
柏振球
Bor, Jenn-Chyou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: 二進制頻移鍵控傳輸器數位控制震盪器開放式迴路調變堆疊式的LC架構無線測試
外文關鍵詞: BFSK transmitter, DCO, open-loop modulation, stacked-LC structure, wireless test
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主題為設計一個高面積效率、可內崁於無線測試系統的二進制頻移鍵控 (BFSK) 傳輸器,操作在2.4 GHz並應用於后羿 (HOY)無線測試平台。為了減少使用面積,提出堆疊式的LC架構,應用在數位控制震盪器中。因應所提出的架構,考慮堆疊電感的效應並建立模型,對產生的Q值衰退以及震盪頻率上升現象加以補償,並預測因為電容及電感step改變而造成的頻階變動。此堆疊的電感亦做為on-chip天線使用,利用多路徑傳輸增加天線傳輸功率。此設計亦藉著所提出的switch-Q可變電容以及開放式迴路調變的架構增加資料率。本傳輸器設計經由台積電 (TSMC) 0.18-μm CMOS製成製作量測,並實際達到僅有0.1 mm2的使用面積,以及高達10 Mb/s的傳輸速率,明顯優於其他頻移鍵控傳輸器。此傳輸器與后羿平台做整合,成功達到無線測試之目標。


    A design of a binary frequency-shift-keying (BFSK) transmitter for a low area overhead is presented in this thesis. The transmitter is applied to the Hypothesis, Odyssey, and Yield (HOY) wireless test system and operates in the 2.4-GHz industrial, scientific, and medical (ISM) band.
    To reduce the area overhead, a stacked-LC tank structure is proposed for the digitally-controlled oscillator (DCO). The effects of inductor stacking are modeled and discussed. Compensation is required to account for Q degradation and the oscillation frequency shift. The frequency step is also estimated based on the modified capacitance step and additional inductance step. The stacked inductor also acts as an on-chip antenna using multipath transmission to enhance the emission efficiency. The proposed switch-Q varactor, along with an open-loop modulation architecture, is adopted in order to increase the data rate.
    The transmitter design is verified through chip fabrication based on a 0.18-μm CMOS process. An area of only 0.1 mm2 and a data rate as high as 10 Mb/s are achieved, which outperforms other FSK transmitters. Integration with the HOY system is also demonstrated.

    Abstract iii Acknowledgement v Table of Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Wireless Test 2 1.3 FSK Transmitters 3 1.4 Thesis Organization 5 Chapter 2 HOY Wireless Test System 7 2.1 HOY System Architecture 7 2.2 Wireless Link 10 2.3 Uplink Transmitter Architecture 13 2.3.1 Modulation Schemes 13 2.3.2 Open-Loop BFSK Transmitter with Calibration 15 Chapter 3 Design Issues Related to the Embedded Transmitter 18 3.1 On-chip Antenna 18 3.2 Stacked-LC Tank 21 3.2.1 Basic Circuit Model with a Stacked Inductor 21 3.2.2 Circuit Model with Multiple Paths 27 3.2.3 Coupling Effect in TSMC 0.18-μm CMOS Process 30 3.3 High-Resolution Digital Varactor 35 3.3.1 Background 36 3.3.2 Switch-Q Varactor 38 3.4 Frequency Detection 40 Chapter 4 Chip Implementation 43 4.1 DCO Core Circuit 43 4.1.1 Maximum-gm Cross-Coupled Pair 44 4.1.2 Inductor Selection 46 4.2 DCO Varactor Arrays 50 4.2.1 Stacking Effects on a Varactor Cell 50 4.2.1.1 Analysis Procedure 50 4.2.1.2 Simulation Results 65 4.2.2 Stacking Effects on Common-Mode Loads 68 4.2.2.1 Basic Differential LC Tank Model 68 4.2.2.2 Effects from the Varactor Buffer 72 4.2.3 Varactor Implementation 80 4.2.3.1 Tuning Step for the Coarse-Tuning Varactors 80 4.2.3.2 Tuning Step for the Fine-Tuning Varactors 82 4.2.3.3 Linearity Performance 84 4.3 Frequency Detector 89 4.4 Calibration Controller 91 4.5 Layout Planning 92 Chapter 5 Experiment Results 96 5.1 Effects of the Stacked Inductor 96 5.2 Performance of the Embedded Transmitter 98 5.3 HOY System Implementation 104 Chapter 6 Conclusions and Future Works 105 6.1 Conclusions 105 6.2 Future Works 106 Bibliography 107

    [1] J.-J. Liou, C.-T. Huang, C.-W. Wu, C.-C. Tien, C.-H. Wang, H.-P. Ma, Y.-Y. Chen, Y.-C. Hsu, L.-M. Deng, C.-J. Chiu, Y.-W. Li, C.-M. Chang, ”A prototype of a wireless-based test system,” in IEEE Int. SOC Conf., 2007, pp.225-228.
    [2] H. Eberle and A. Wander, “Testing Systems Wirelessly,” in Proc. 22nd IEEE VLSI Test Symp. Conf., 2004, pp. 335–340.
    [3] C. V. Sellathamby, M. M. Reja, F. Lin, B. Bai, E. Reid, S. H. Slupsky, I. M. Filanovsky, and K. Iniewski, “Noncontact Wafer Probe Using Wireless Probe Cards,” in IEEE Int. Test Conf.(ITC), 2005, pp. 447–452.
    [4] B. Moore, M. Mangrum, C. Sellathamby, M. Reja, T. Weng, B. Bai, E. Reid, I. Filanovsky, and S. Slupsky, “Non-contact Testing for SoC and RCP (SIPs) at Advanced Nodes,” in IEEE Int. Test Conf.(ITC), 2008, pp. 1–10.
    [5] D. Zhao and Y. Wang, “MTNet: Design of a Wireless Test Framework for Heterogeneous Nanometer Systems-on-Chip,” in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, pp. 1046–1057, Aug. 2008.
    [6] L. Pileggi, C. P. Yue, R. S. Blanton, and T.Vogels, “System and Method to Test Integrated Circuits on a Wafer,” U.S. Patent 7,325,180, Jan. 29, 2008.
    [7] P.-K. Chen, Y.-T. Hsing, and C.-W. Wu, “On Feasibility of HOY: A Wireless Test Methodology for VLSI Chips and Wafers,” in Int. Symp. VLSI Des., Autom. Test (VLSI-DAT), 2006, pp. 26–28.
    [8] R. Li, W. Bomstad, J. Caserta, X. Guo, and O. Kenneth, “Evaluation of Integrated Antennas for Wireless Connection between an Integrated Circuit and an Off-chip Antenna,” in Proc. IEEE Int. Interconnect Technol. Conf., Jun. 2003, pp. 120–122.
    [9] P. Park and C. P.Yue, “A Feasibility Study of On-wafer Wireless Testing,” in Int. Symp. VLSI Des., Autom. Test (VLSI-DAT), Apr. 2008, pp. 299–302.
    [10] P. Park, L. Chen, L. Wang, S. Long, H. Yu, and C. Patrick Yue, “On-wafer Wireless Testing and Mismatch Monitoring Using RF Transmitters with Integrated Antennas,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2009, pp. 505–508.
    [11] P. Park, L. Chen, H.-K. Yu, and C. P. Yue, “A Fully Integrated Transmitter with Embedded Antenna for On-Wafer Wireless Testing,” IEEE Trans. on Microwave Theory and Techniques, vol. 58, pp. 1456–1463, May 2010.
    [12] K. Kurokawa, “Injection Locking of Microwave Solid-state Oscillators,” Proc. IEEE, vol. 61, pp. 1386–1410, Oct. 1973.
    [13] N. Boom, W. Rens, and J. Crols, “A 5.0mW 0dBm FSK Transmitter for 315/433 MHz ISM Applications in 0.25 μm CMOS,” in Proc. 30th European Solid-State Circuits Conf. (ESSCIRC), 2004, pp. 199–202.
    [14] Huaide Wang, M.-H. Hung, Y.-C. Yeh, Jri Lee “A 60-GHz FSK Transceiver with Automatically-Calibrated Demodulator in 90-nm CMOS,” in IEEE Symp. VLSI Circuits (VLSIC), 2010, pp. 95–96.
    [15] K.-C. Liao, P.-S. Huang, W.-H. Chiu, T.-H. Lin, “A 400-MHz/900-MHz/2.4-GHz Multi-band FSK Transmitter in 0.18-μm CMOS,” in IEEE Asian Solid-State Circuits Conf. (ASSCC), 2009, pp. 353–356.
    [16] T. A. D. Riley and M. A. Copeland, “A Simplified Continuous Phase Modulator Technique,” IEEE Trans. Circuits Syst. II, vol. 41, pp. 321–328, May 1994.
    [17] M. A. Ferriss and M. P. Flynn, “A 14 mW Fractional-N PLL Modulator With a Digital Phase Detector and Frequency Switching Scheme,” IEEE J. Solid-State Circuits, vol. 43, pp. 2464–2471, Nov. 2008.
    [18] S. Pamarti, L. Jansson, and I. Galton “A Wideband 2.4-GHz Delta-Sigma Fractional-N PLL With 1-Mb/s In-Loop Modulation,” IEEE J. Solid-State Circuits, vol. 39, pp. 49–62, Jan. 2004.
    [19] D. R. McMahill, and C. G. Sodini, “A 2.5-Mb/s GFSK 5.0-Mb/s 4-FSK automatically calibrated Σ-Δ frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 37, pp. 18–26, Jan. 2002.
    [20] S. Wilingham, M. Perrott, B. Setterberg, A. Grzegorek, and B. McFarland, “An Integrated 2.5 GHz ΣΔ Frequency Synthesizer with 5 μs Settling and 2 Mb/s Closed Loop Modulation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2000, pp. 200–201.
    [21] P. Popplewell, V. Karam, A. Shamim, J. Rogers, L. Roy, and C. Plett, “A 5.2-GHz BFSK Transceiver Using Injection-Locking and an On-Chip Antenna,” IEEE J. Solid-State Circuits, vol. 43, pp. 981–990, Apr. 2008.
    [22] B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, and K. S. J. Pister, “Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply,” IEEE J. Solid-State Circuits, vol. 41, pp. 2757-2766, Dec. 2006.
    [23] S. Mikami, T. Matsuno, M. Miyama, M. Yoshimoto, and H. Ono, “A Wireless-Interface SoC Powered by Energy Harvesting for Short-range Data Communication,” in Asian Solid-State Circuits Conf., 2005, pp. 241-244.
    [24] S. Cho and A. P. Chadrakasan, “A 6.5-GHz Energy-Efficient BFSK Modulator for Wireless Sensor Applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 731-739, May 2004.
    [25] M.-W. Shen, C.-Y. Lee, and J.-C. Bor, “A 4.0-mW 2-Mbps Programmable BFSK Transmitter for Capsule Endoscope Applications,” in Asian Solid-State Circuits Conf., 2005, pp. 245–248.
    [26] Y.-H. Liu and T.-H. Lin; “An Energy-Efficient 1.5-Mbps Wireless FSK Transmitter with A ΣΔ-Modulated Phase Rotator,” in Proc. 33th European Solid-State Circuits Conf. (ESSCIRC), 2007, pp. 488–491.
    [27] C.-F. Li, C.-Y. Lee, C.-H. Wang, S.-L. Chang, L.-M. Denq, C.-C. Chi, H.-J. Hsu, M.-Y. Chu; J.-J. Liou, S.-Y. Huang, P.-C. Huang, H.-P. Ma, J.-C, Bor, C.-W, Wu, C.-C. Tien, C.-H. Wang, Y.-S. Kuo, C.-T. Huang, T.-Y. Chang, “A low-cost wireless interface with no external antenna and crystal oscillator for Cm-range contactless testing,” in 48th ACM/EDAC/IEEE Design Automation Conference (DAC), 2011, pp. 771–776.
    [28] M. Arai, S. Fukumoto, and K. Iwasaki, ‘Test Data Compression of 100x for Scan-Based BIST,’ in IEEE Int. Test Conf. (ITC), 2006, pp. 1–10.
    [29] Y. Wang, A. M. Niknejad, V. Gaudet, and K. Iniewski, “A CMOS IR-UWB Transceiver Design for Contact-Less Chip Testing Applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 55, pp. 334–338, Apr. 2008.
    [30] M.-Y. Chu, T.-Y. Chang, H.-J. Hsu, C.-Y. Lee, C.-F. Li, H.-P. Ma, C.-T. Huang, S.-Y. Huang, J.-B. Bor, and P.-C. Huang, “Wireless Communication Interface Design for HOY Wireless Testing Scheme,” in 15th Int. Test Synthesis Workshop (ITSW), 2008.
    [31] A. C. W. Wong, G. Kathiresan, C. K. T. Chan, O. Eljamaly, O. Omeni, D. McDonagh, A. J. Burdett, and C. Toumazou, “A 1 V Wireless Transceiver for an Ultra-Low-Power SoC for Biotelemetry Applications,” IEEE J. Solid-State Circuits, vol. 43, pp. 1511–1521, Jul. 2008.
    [32] V. Peiris, C. Arm, S. Bories, S. Cserveny, F. Giroud, P. Graber, S. Gyger, E. Le Roux, T. Melly, M. Moser, O. Nys, F. Pengg, P.-D. Pfister, N. Raemy, A. Ribordy, P.-F. Ruedi, D. Ruffieux, L. Sumanen, S. Todeschin, and P. Volet, “A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF Transceiver SoC in Standard Digital 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2005, pp. 258–259.
    [33] S. Diao, Y. Gao, W. Toh, A. C., Y. Zheng, M. Je, and C.-H. Heng, “A Low-Power, High Data-Rate CMOS ASK Transmitter for Wireless Capsule Endoscopy,” in Defense Science Research Conf. and Expo (DSR), 2011, pp. 1-4.
    [34] M. Baghaei-Nejad, S. Radiom, G. Vandenbosch, L.-R. Zheng, and G. Gielen, “Fully Integrated 1.2 pJ/p UWB Transmitter with On-Chip Antenna for Wireless Identification,” in IEEE Int. Conf. on Ultra-Wideband (ICUWB), 2010, pp. 1–4.
    [35] P. Piljae, L. Chen, L. Wang, S. Long, H. K. Yu, and C. P. Yue, “On-Wafer Wireless Testing and Mismatch Monitoring Using RF Transmitters with Integrated Antennas,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2009, pp. 505–508.
    [36] P. Z. Peebles, Digital Communication Systems. NJ: Prentice-Hall, 1987.
    [37] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, NY: Wiley, 2003.
    [38] A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, J. Castaneda, and F. De Flaviis, “A UHF Near-Field RFID System With Fully Integrated Transponder,” IEEE Trans. on Microwave Theory and Techniques, vol. 56, pp. 1267–1277, May 2008.
    [39] J. Yoo, S. Lee, and H.-J. Yoo, “A 1.12 pJ/b Inductive Transceiver With a Fault-Tolerant Network Switch for Multi-Layer Wearable Body Area Network Applications,” IEEE J. Solid-State Circuits, vol. 44, pp. 2999–3010, Nov. 2009.
    [40] K. Eom and H. Arai, “A Free Access Mat by Tightly Coupled Patch Array for Short Range Wireless Access,” in Proc. IEEE Antennas and Propag. Int. Symp., Jun. 2007, pp. 441–444.
    [41] K. Eom and H. Arai, “Dual Band Free Access Mat for Short Range Wireless Access,” in Proc. 18th Annu. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (PIMRC), 2007, pp. 1–5.
    [42] D. Guermandi, S. Gambini, and J. Rabaey, “A 1 V 250 kpps 90 nm CMOS Pulse Based Transceiver for Cm-Range Wireless Communication,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2007, pp. 135–138.
    [43] N. Miura, D. Mizoguchi, M. Inoue, K. Niitsu, Y. Nakagawa, M. Tago, M. Fukaishi, T. Sakurai, and T. Kuroda, “A 1 Tb/s 3W Inductive-Coupling Transceiver for 3D-Stacked Inter-Chip Clock and Data Link,” IEEE J. Solid-State Circuits, vol. 42, pp. 111–122, Jan. 2007.
    [44] N. Miura, H. Ishikuro, K. Niitsu, T. Sakurai, and T. Kuroda, “A 0.14 pJ/b Inductive-Coupling Transceiver With Digitally-Controlled Precise Pulse Shaping,” IEEE J. Solid-State Circuits, vol. 43, pp. 285–291, Jan. 2008.
    [45] H. Ishikuro, T. Sugahara, and T. Kuroda, “An Attachable Wireless Chip Access Interface for Arbitrary Data Rate Using Pulse-Based Inductive-Coupling through LSI Package,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2007, pp. 360–608.
    [46] H. Ishikuro, N. Miura, and T. Kuroda, “Wideband Inductive-coupling Interface for High-performance Portable System,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2007, pp. 13–20.
    [47] R. Bashirullah, W. Liu, Y. Ji, A. Kendir, M. Sivaprakasam, G. Wang, and B. Pundi, “A Smart Bi-directional Telemetry Unit for Retinal Prosthetic Device,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2003, pp. V-5–V-8.
    [48] M. S. Wegmueller, M. Hediger, T. Kaufmann, F. Buergin, and W. Fichtner, “Wireless Implant Communications for Biomedical Monitoring Sensor Network,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2007, pp. 809–812.
    [49] Z. Lu and M. Sawan, “An 8 Mbps Data Rate Transmission by Inductive Link Dedicated to Implantable Devices,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2008, pp. 3057–3060.
    [50] Y. Hu and M. Sawan, “A Fully Integrated Low-Power BPSK Demodulator for Implantable Medical Devices,” IEEE Tran. Circuits Syst. I: Reg. Papers, vol. 52, pp. 2552–2562, Dec. 2005.
    [51] C. Sauer, M. Stanac’evic’, G. Cauwenberghs, and N. Thakor, “Power Harvesting and Telemetry in CMOS for Implanted Devices,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 52, pp. 2605–2613, Dec. 2005.
    [52] M. Ghovanloo and S. Atluri, “A Wideband Power-Efficient Inductive Wireless Link for Implantable Microelectronic Devices Using Multiple Carriers,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 54, pp. 2211–2221, Oct. 2007.
    [53] P. Li and R. Bashirullah, “A Wireless Power Interface for Rechargeable Battery Operated Medical Implants,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 54, pp. 912–916, Oct. 2007.
    [54] A. Finocchiaro, G. Ferla, G. Girlando, F. Carrara, and G. Palmisano, “A 900-MHz RFID System with TAG-Antenna Magnetically-Coupled to the Die,” in IEEE Radio Frequency Integrated Circuits Symp., 2008, pp. 281–284.
    [55] N. N. M. Khanh, M. Sasaki, and K. Asada, “A Fully Integrated Shock Wave Transmitter with an On-Chip Dipole Antenna for Pulse Beam-Formability in 0.18-μm CMOS,” in 16th Asia and South Pacific Design Automation Conf. (ASP-DAC), 2011, pp. 107–108.
    [56] V. V. Kulkarni, M. Muqsith, K. Niitsu, H. Ishikuro, and T. Kuroda, “A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB Transmitter With Embedded On-Chip Antenna,” IEEE J. of Solid-State Circuits, vol. 44, pp. 394–403, Feb. 2009.
    [57] V. Karam, P. H. R. Popplewell, A. Shamim, J. Rogers, and C. Plett, “A 6.3 GHz BFSK Transmitter with On-Chip Antenna for Self-Powered Medical Sensor Applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2007, pp. 101–104.
    [58] N. Nastos and Y. Papananos, “RF Operation of MOSFETs Under Integrated Inductors,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 2106–2117, May 2006.
    [59] C. P. Yue and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 743–752, May 1998.
    [60] F. Zhang and P. R. Kinget, “Design of Components and Circuits Underneath Integrated Inductors,” IEEE J. Solid-State Circuits, vol. 41, pp. 2265–2271, Oct. 2006.
    [61] S.-A. Yu and P. Kinget, “A 0.042-mm2 Fully Integrated Analog PLL with Stacked Capacitor-Inductor in 45nm CMOS,” in 34th European Solid-State Circuits Conf. (ESSCIRC), 2008, pp. 94–97.
    [62] R. B. Staszewski, C.-M. Hung, D. Leipold, and P. T. Balsara, “A First Multigigahertz Digitally Controlled Oscillator for Wireless Applications,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2154–2164, Nov. 2003.
    [63] R. B. Staszewski, C. M. Hung, N. Barton, M. C. Lee, and D. Leipold, “A Digitally Controlled Oscillator in a 90nm Digital CMOS Process for Mobile Phones”, IEEE J. Solid-State Circuits, vol. 40, pp. 2203–2211, Nov. 2005.
    [64] C. C. Hung and S. I. Liu, “A 35.56 GHz All-Digital Phase-Locked Loop with High Resolution Varactors,” in Int. Symp. VLSI Des., Autom. Test (VLSI-DAT), Apr. 2010, pp. 245–248.
    [65] A. L. S. Loke, R. K. Barnes, T. T. Wee, M. M. Oshima, C. E. Moore, R. R. Kennedy, and M. J. Gilsdorf, “A Versatile 90-nm CMOS Charge-Pump PLL for SerDes Transmitter Clocking,” IEEE J. Solid-State Circuits, vol. 41, pp. 1894–1907, Jun. 2006.
    [66] J. Zhuang, Q. Du, and T. Kwasniewski, “A 3.3 GHz LC-Based Digitally Controlled Oscillator with 5kHz Frequency Resolution,’ in IEEE Asian Solid-State Circuits Conf. (ASSCC), 2007, pp.428–431.
    [67] T. Pittorino, Y. Chen, V. Neubauer, T. Mayer, and L. Maurer, “A UMTS-Compliant Fully Digitally Controlled Oscillator with 100Mhz Fine-Tuning Range in 0.13um CMOS”, in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2006, pp. 770–779.
    [68] N. D. Dalt, C. Kropf, M. Burian, T. Hartig, and H. Eul, "A 10b 10GHz Digitally Controlled LC Oscillator in 65nm CMOS”, in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2006, pp. 669–678.
    [69] S.-S. Yoo, Y.-C. Choi, H.-J. Song, and H.-J. Yoo, “A 5.9 GHz LC-Based Digitally Controlled Oscillator with High Frequency Resolution Using Novel Varactor Pairs,” in IEEE RF Integration Technol. Symp., 2009, pp. 195–198.
    [70] J. H. Han and S. H. Cho, “Digitally Controlled Oscillator with High Frequency Resolution Using Novel Varactor Bank,” Electronics Lett., vol. 44, pp. 1450–1452, 2007.
    [71] L. Fanori, A. Liscidini, and R. Castello, “Capacitive Degeneration in LC-Tank Oscillator for DCO Fine-Frequency Tuning”, IEEE J. Solid-State Circuits, vol. 45, pp. 2737–2745, Dec. 2010.
    [72] M. K. Raja, X. Chen, D. L. Yan, C.Y. Ben, and X. Yuan, “A 18 mW Tx, 22 mW Rx Transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS,” in IEEE Asian Solid-State Circuits Conf. (ASSCC), 2010, pp. 1–3.
    [73] R. B. Staszewski, D. Leipold, and P. T. Balsara, “Direct Frequency Modulation of an ADPLL for Bluetooth/GSM With Injection Pulling Elimination,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52, pp. 339–343, Jun. 2005.
    [74] W. W. Si, S. Mehta, H. Samavati, M. Terrovitis, M. Mack, K. Onodera, S. Jen, S. Luschas, J. Hwang, S. Mendis, D. Su, and B. Wooley, “A 1.9-GHz Single-Chip CMOS PHS Cellphone,” IEEE J. Solid-State Circuits, vol. 41, pp. 2737–2745, Dec. 2006.
    [75] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration,” IEEE J. Solid-State Circuits, vol. 40, pp. 909–917, Apr. 2005.
    [76] N. M. Pletcher and J. M. Rabaey, “A 100μW, 1.9GHz Oscillator with Fully Digital Frequency Tuning,” in Proc. of the 31st European Solid-State Circuits Conf. (ERRCIRC), 2005, pp. 387–390.
    [77] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
    [78] J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-State Circuits, vol. 24, pp. 62–70, Feb. 1989.
    [79] F. Jonsson and H. Olsson, “A Low-Leakage Open-Loop Frequency Synthesizer Allowing Small-Area On-Chip Loop Filter,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 56, pp. 195–199, Mar. 2009.
    [80] J. Ayers, N. Panitantum, K.Mayaram, and T. S. Fiez, “A 2.4 GHz Wireless Transceiver with 0.95 nJ/b Link Energy for Multi-Hop Battery Free Wireless Sensor Networks,” in IEEE Symp. VLSI Circuits (VLSIC), 2010, pp. 29–30.
    [81] W. Rahajandraibe, L. Zaid, V. Cheynet de Beaupre, and G. Bas, “2.4-GHz Frequency Synthesizer with Open Loop FSK Modulator for WPAN Applications,” in IEEE Northeast Workshop on Circuits and Systems (NEWCAS), 2007, pp. 1453–1456.
    [82] N. Saputra and J. R. Long, “A Fully-Integrated, Short-Range, Low Data Rate FM-UWB Transmitter in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, pp. 1627–1635, Jul. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE