簡易檢索 / 詳目顯示

研究生: 邱紹賢
Shao-Hsien Chiu
論文名稱: 非平衡磁控濺鍍製程中氧氣流量對奈米晶氮氧化鈦薄膜合成及性質特徵之影響研究
Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 97
中文關鍵詞: 非平衡磁控濺鍍製程氮氧化鈦薄膜本質腐蝕晶體織構轉換
外文關鍵詞: Unbalanced Magnetron Sputtering System, TiNxOy thin film, intrinsic corrosion, texture evolution
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗成功地利用非平衡磁控濺鍍法鍍著奈米晶的氮氧化鈦薄膜鍍著於p型(111)矽晶片上。主要研究氧氣流量 (自0至1.5 sccm,固定氮氣流量為 2.5 sccm) 對氮氧化鈦薄膜的成分、結構與性質之影響。隨著氧氣流量的增加,藉由X光光電子儀 (XPS) 所量測到氮氧化鈦薄膜的氧含量顯著增加。當薄膜氧含量增加時,薄膜的顏色由金黃色改變為紫色,最後是明亮的綠色;由場發射掃描式電子顯微鏡所觀察到的微結構也有明顯的改變。觀察X光繞射圖發現,薄膜氧含量大於12 at% 時,其氮氧化鈦薄膜的優選方向會從氮化鈦薄膜之 (111) 改變至 (200),且當薄膜氧含量大於32 at % 時,氮化鈦薄膜會發生相轉換至單斜的五氧化三鈦薄膜。在氮氧化鈦薄膜中,當氧含量在7 at % 至25 at% 時,其硬度沒有太多的改變,直到薄膜氧含量大於25 at%,其硬度會隨著薄膜氧含量上升而逐漸下降至五氧化三鈦薄膜的值11.6 GPa。本研究中使用光學方法量測氮氧化鈦薄膜的整體殘留應力,並使用modified XRD sin2Ψ的方法加以比較其兩種方法的差異。其薄膜的殘留應力也與薄膜硬度的趨勢相似,會隨著薄膜氧含量上升而逐漸下降至五氧化三鋯薄膜的值 -1.7 GPa。另一方面,本研究鍍著出的薄膜電阻率非常接近單晶氮化鈦薄膜,且發現隨著薄膜氧含量的增加,薄膜的電阻率非常明顯地上升。由於氮氧化鈦薄膜為奈米晶粒,因此晶粒大小並不是影響電阻率的主要因素。在1N H2SO4溶液的動態極化掃瞄實驗裡,本研究也成功的量測出氮氧化鈦薄膜的本質腐蝕電位和本質腐蝕電流,其本質腐蝕電位量測皆為正值(相對於飽和氯化銀電極),並且發現氮氧化鈦薄膜的本質腐蝕電位與薄膜中的TiN 共價鍵含量有著線性的關係,因此可知其薄膜的本質腐蝕電位與薄膜中的成分有關,並且從非常低的薄膜本質腐蝕電流得知,其本質腐蝕電流為主要決定薄膜抗腐蝕性質的因素。


    The functional colored hard coating has been developed to offer more advantages for decorations in recent years. A favored class of material is TiNxOy thin film which has substantial attentions by a variety of colorations and available mechanical properties. In this study, TiNxOy thin films were deposited by unbalanced magnetron sputtering with addition of oxygen and nitrogen at 350℃. The results show that the film coloration changes from warmer golden to vivid green and the hardness value is ranged from 20.8 to 11.6 GPa as the oxygen content was increased from 7 to 60 at %. The compressive residual stress of TiNxOy thin films was measured by modified XRD sin2Ψ and optical methods. The compressive stress shows that a gradual relief of stress from -4.75 to -1.10 GPa with the increasing oxygen content. Distinct change in microstructure is observed in SEM cross-section microscopy that the columnar structure further develops to cone shape of coarse columnar structure when the oxygen content increases from 39 to 60 at %. It is noted that the electrical resistivity of TiNxOy thin film for 7 at % oxygen content was measured only 20.7μΩ-cm which approaches to that of the single crystalline TiN film (15μΩ-cm). The texture evolution exhibits a significant transition from (111) preferred orientation to (200) dominated orientation for films between 12 at % and 32 at % oxygen content. Furthermore, the intrinsic corrosion potential of TiNxOy thin films is determined to have superior corrosive resistance in 1N H2SO4 solution since the measured Ecorr is at least + 60 mVAg/AgCl. The TiNxOy thin film maintains a suitable mechanical property for decorative applications, and the corrosion resistance can survive the attack of severe environment.

    Contents ………………………………………………………………………………. III Figures Caption ……………………………………………………………………… VII Tables Caption ……………………………………………………………………….. X Chapter 1 Introduction ……………………………………………………………… 1 Chapter 2 Literature Review ………………………………………………………... 3 2.1 Characteristics of TiNxOy films ……………………………………………….. 3 2.1.1 TiNxOy films ……………………………………………………………..... 3 2.1.2 TiN phase …………………………………………………………………... 4 2.1.3 Ti3O5 phase ………………………………………………………………… 4 2.2 Deposition method (Unbalanced Magnetron sputtering, UBMS) ……………… 5 2.3 Influences of Oxygen Addition on the Crystal Structure, Mechanical and Electrical Characterizations of TMeNxOy Films ………………………………. 6 2.3.1 Crystalline Structure ……………………………………………………….. 6 2.3.1.1. Effect of Deposition Method …………………………………………. 6 2.3.1.2. Crystallographic Structure Evolution …………………………………. 7 2.3.1.3. Substitution …………………………………………………………… 7 2.3.2 Texture Evolution …………………………………………………………... 8 2.3.2.1 Overall Energy ………………………………………………………… 8 2.3.2.2 Partial Pressure of Nitrogen & Growing Precursor …………………… 8 2.3.2.3 Surface Diffusion ……………………………………………………… 9 2.3.2.4 Ti Adatom Chemical Potential ………………………………………… 10 2.3.3 Mechanical and Electrical Properties ………………………………………. 12 2.3.3.1 Hardness ………………………………………………………………. 12 2.3.3.2 Residual Stress ………………………………………………………… 12 2.3.3.3. Electrical Resistivity ………………………………………………….. 13 2.4 Corrosion Resistance …………………………………………………………… 14 Chapter 3 Experimental Details …………………………………………………….. 17 3.1 Specimen Preparation & Deposition Process for TiNxOy ……………………… 17 3.2 Characterization Methods ………………………………………………………. 19 3.2.1 X-ray Photoelectron Spectroscopy (XPS) …………………………………. 19 3.2.2 Rutherford Backscattering Spectroscopy (RBS) …………………………... 20 3.2.3 XRD and GIXRD ………………………………………………………….. 21 3.2.4 SIMS ……………………………………………………………………….. 22 3.3 Properties Measurement ………………………………………………………… 22 3.3.1 Electrical Resistivity ……………………………………………………….. 22 3.3.2 Hardness ……………………………………………………………………. 22 3.3.3 Residual Stress ……………………………………………………………... 23 3.3.3.1 Optical Method ………………………………………………………... 23 3.3.3.1 Modified XRD sin2ψ Method …………………………………………. 24 3.4 Corrosion Resistance …………………………………………………………… 26 Chapter 4 Results …………………………………………………………………….. 27 4.1 Compositions (XPS) ……………………………………………………………. 27 4.1.1 The Full XPS Spectra of TiNxOy Thin Films ……………………………… 27 4.1.2 Individual XPS spectra of Ti-2p, N-1s and O-1s …………………………... 27 4.2 Structure ………………………………………………………………………… 37 4.2.1 SIMS ……………………………………………………………………….. 37 4.2.2 SEM ………………………………………………………………………... 37 4.2.3 Ө-2Ө XRD …………………………………………………………………. 43 4.2.4 Lattice Parameter …………………………………………………………... 43 4.2.5 Grain Size ……………………………………………………………….... 44 4.2.6 AFM (Surface Morphology & Roughness) ………………………………. 48 4.2.7 Packing Density …………………………………………………………... 48 4.3 Properties ……………………………………………………………………….. 51 4.3.1 Coloration Characteristics ………………………………………………… 51 4.3.2 Hardness …………………………………………………………………... 51 4.3.3 Residual Stress …………………………………………………………….. 51 4.3.4 Resistivity ………………………………………………………………….. 56 4.4 Corrosion Properties …………………………………………………………. 58 Chapter 5 Discussion ……………………………………………………………….. 61 5.1 Composition and Substitution …………………………………………………... 61 5.2 Phase Transition and Kinetic Characteristics …………………………………… 66 5.2.1 Coverage Competition ……………………………………………………. 66 5.2.2 Surface Kinetic Analysis …………………………………………………… 67 5.3 Texture Evolution ……………………………………………………………….. 72 5.4 The Effect of Oxygen on Crystalline Structure ………………………………... 75 5.5 Mechanical and Electrical Properties ………………………………………….. 77 5.5.1 Hardness …………………………………………………………………... 77 5.5.2 Residual Stress ……………………………………………………………. 79 5.5.3 Electrical Resistivity ……………………………………………………… 80 5.6 Corrosion Property …………………………………………………………….. 85 Chapter 6 Conclusions ……………………………………………………………… 91 References …………………………………………………………………………… 92 Figures Caption Fig. 3.1 The schematic diagram of the in-situ curvature system ……………...... 25 Fig. 4.1 Fig. 4.1 Full XPS spectra of TiNxOy thin films deposited at (a) 0 (b) 0.25 (c) 0.5 (d) 0.625 (e) 0.75 (f) 1 (g) 1.25 (h) 1.5 sccm oxygen flow rate (with a fixed 2.5 sccm N2 flow rate) ……………………………… 30 Fig. 4.2 Deconvoluted of Ti-2p XPS spectra for samples deposited at (a) 0 sccm (b) 1.5 sccm of oxygen flow …………………………………...... 31 Fig. 4.3 Deconvoluted of N-1s XPS spectra for samples deposited at (a) 0 sccm (b) 1.5 sccm of oxygen flow ……………………………….................... 32 Fig. 4.4 Deconvoluted of O-1s XPS spectra for samples deposited at (a) 0 sccm (b) 1.5 sccm of oxygen flow …………………………………................ 33 Fig. 4.5 The element fraction of Ti, N and O for samples at different oxygen flow rates with a fixed 2.5 sccm of nitrogen flow rate ………………… 35 Fig. 4.6 The fraction of chemisorbed oxygen to titanium versus oxygen flow rate ……………………………………………………………………... 36 Fig. 4.7 The SIMS depth profile for samples of S0, S3 and S7 ………………... 39 Fig. 4.8 SEM images with oxygen flow rates (a) 0 (b) 0.25 (c) 0.5 (d) 0.625 (e) 0.75 (f) 1 sccm (g) 1.25 sccm (h) 1.5 sccm …………………................. 40 Fig 4.9 Plane views of SEM with oxygen flow rates for samples at(a) 0 sccmcm (b) 0.25 sccm (c) 1.5 sccm ……………………………………………… 42 Fig. 4.10 The XRD patterns of TiNxOy thin film versus different oxygen flow rate in a fixed 2.5 sccm nitrogen flow rate……………………………... 45 Fig. 4.11 The GIXRD patterns of TiNxOy thin film versus different oxygen flow rates ……………………………………………………………………. 46 Fig. 4.12 The grain size of TiNxOy thin films versus various oxygen contents ………………………………………………………………… 47 Fig. 4.13 The AFM images with oxygen flow rate (a) 0 sccm (b) 0.625 sccm (c) 1.25 sccm ………………………………………………………………. 49 Fig 4.14 The variations of roughness of TiNxOy thin films versus oxygen content …………………………………………………………………. 50 Fig. 4.15 The variation of packing density versus oxygen content ……………… 50 Fig. 4.16 Average color coordinate in the CIELAB space for L*, a* and b* of film samples (S0~S7) versus oxygen content …………………………. 54 Fig. 4.17 The variations of hardness versus oxygen content …………………..... 54 Fig. 4.18 The compressive residual stress versus oxygen content by optical and X-ray measurements …………………………………………………… 55 Fig. 4.19 The variations of resistivity versus oxygen content …………………… 57 Fig. 4.20 The variations of Ecorr and Icorr for sample from S0 to S6 …………..... 59 Fig. 4.21 The variations of Ecorr versus oxygen content …………………………. 60 Fig. 4.22 The variations of Icorr versus oxygen content ………………………….. 60 Fig. 5.1 The variety of N/Ti and O/Ti ratios versus oxygen content in TiNxOy thin films ………………………………………………………………. 64 Fig. 5.2 The ratio of O/Ti versus that of N/Ti in TiN phase and Ti3O5 phase …. 64 Fig. 5.3 The fraction (%) of TiN covalent bond, TiO ionic bond, Ti(NO) mixed bond and chemisorbed oxygen versus oxygen content ………………... 65 Fig. 5.4 The ratio of N/Ti in TiN covalent bond versus that of O/Ti in TiO ionic bond in TiN and Ti3O5 crystalline structures …………………………. 65 Fig. 5.5 The ratio of coverage grown rate for oxygen to nitrogen versus the oxygen content ………………………………………………………… 71 Fig. 5.6 The sticking probability of oxygen and nitrogen, and its ratio versus the ratio of oxygen flow rate to that of nitrogen ………………………. 71 Fig. 5.7 The (200) texture coefficient and fraction of chemisorbed oxygen versus the increasing oxygen content ………………………………….. 74 Fig. 5.8 The film hardness versus the fraction of Ti(NO) mixed bond ………… 83 Fig. 5.9 The residual stress versus the fraction of Ti(NO) mixed bond ………... 84 Fig. 5.10 The possible mechanism of TiN reacted to TiO2 layer in the acid solution ………………………………………………………………… 88 Fig. 5.11 The fraction of TiN covalent bond (%) and the intrinsic corrosion potential mVAg/AgCl versus oxygen contents ………………………... 89 Fig. 5.12 The linear relationship between the intrinsic corrosion potential mVAg/AgCl and the fraction of TiN covalent bond (%)………………. 89 Fig. 5.13 Evan’s diagram of TiNxOy thin film in 1N sulphuric acid solution …... 90 Tables Caption Table 2.1 The summarized results of TiN texture evolution by Gall et al…………... 16 Table 3.1 The coating conditions of TiNxOy thin films ……………………………. 18 Table 4.1 The experimental results of TiNxOy thin film for samples deposited at different oxygen flow rates ……………………………………………..... 34 Table 4.2 The detailed composition of TiNxOy thin films: x/z is the fraction ratio of nitrogen to titanium, y/z is the fraction ratio of oxygen to titanium, a/z is the fraction ratio of chemisorbed nitrogen to titanium and b/z is the fraction ratio of chemisorbed oxygen to titanium ………………….......... 35 Table 4.3 The CIE 1976 L*, a*, b* space color coordinate for film samples (S0-S7) versus oxygen content and the coloration simulations by adobe photoshop software ………………………………………………………. 53 Table 4.4 The experimental results for corrosion measurement ……………………. 59 Table 5.1 Analysis of surface kinetic data for the TiNxOy thin films ……………… 70

    References
    1. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 168 (2003) 43.
    2. Jia-Hong Huang, Hao-Chung Yang, Xing-Jian Guo, Ge-Ping Yu, Surf. Coat. Technol. 195 (2005) 204.
    3. Jia-Hong Huang, Kiang-Wee Lau, Ge-Ping Yu, Surf. Coat. Technol. 191 (2005) 17.
    4. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corros. Sci. 43 (2001) 2023.
    5. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films 447-448 (2004) 449.
    6. Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
    7. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
    8. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
    9. A. Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
    10. M. Lazaror, P. Raths, H. Metager, W. Spirkl, J. Appl. Phys. 77 (5) (1995) 2133.
    11. S. Veprek, Thin Solid Films 130 (1985) 135.
    12. J. P Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, X. H. Liu, J. Phys. D: Appl. Phys. 30 (1997) 5.
    13. H.A. Fehn, Surf. Coat. Technol. 125 (2000) 212.
    14. Y. Massiani, A. Medjahed, P. Gravier, J. P. Crousier, Thin Solid Films 217 (1992) 31.
    15. M. Herranen, M. Nordin, J.-O. Carlsson, J. Vac. Sci. Technol. B15 (6) (1997) 1865.
    16. Y. Massiani, P. Gravier, L. Fedrizzi, F.Marchetti, Thin Solid Films 261 (1995) 202.
    17. S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad, M. Wuttig, Thin Solid Films 468 (2004) 48.
    18. P. Carvalho, F. Vaz, L. Rebbouta, L. Cunha, C. J. Tavares, C. Moura, J. Appl. Phys. 98 (2005) 023715/1.
    19. J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys. 72 (5) (1992) 1805.
    20. Min J. Jung, Kyung H. Nam, Yun M. Chung, Jin H. Boo, Jeon, G. Han, Surf. Coat. Technol. 171 (2003) 71.
    21. C. Mitterer., J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H.Stori, Vaccum 46 (1995) 1281.
    22. Philippe E. Schmid, Masako Sato Sunaga, Francis Levy, J. Vac. Sci. Technol. A 16 (5) Sep/Oct (1998) 2870.
    23. Yoichiro Tanaka, Edwin Kin, John Forster, Zheng Xu, J. Vac. Sci. Technol. B 17 (2) (1999) 416.
    24. Katsuhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami Ohnishi, J. Phys. D: Appl. Phys. 37 (2004) 1095.
    25. I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, J. Vac. Sci. Technol. A.12(5) Sep/Oct (1994) 2846.
    26. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E Sundgren, J. Appl. Phys. 80(12) (1996) 6725.
    27. Liaoying Zheng, Sens. Actuators B94 (2003) 294.
    28. C. Hauf, R. Kniep, J. Mater. Sci. 34 (1999) 1287.
    29. S. Asbrink and A. Magneli, Acta Crystallogr. 12 (1959) 575.
    30. Masashige Onoda, J. Solid State Chem. 136 (1998) 76.
    31. Rossnagel SM. Sputter Deposition. In: Sproul WD, Legg LO, editor. Opportunities for Innovation: Advanced surface Engineering. Switzerland, Technoic Publishing Co., 1995.
    32. M. Ohring, “The Material Science of Thin Films”, Academic Press, San Diego, 2002, P.111.
    33. P. S. Mcleod, L. D. Hartsough, J. Vac. Sci. Technol. A 14(1) (1977) 263.
    34. B. Windows, N. Savvides, J. Vac. Sci. Technol. A 4(2) (1986) 196.
    35. Y. Makino. M. Nose, Surf. Coat. Technol. 98 (1998) 934.
    36. S. Venkataraj, O. KappertzR. Jayavel, M. Wuttig, J. Appl. Phys. 92 (2002) 2461.
    37. F. Fabreguette, L. ImhoV, J. Guillot, B. Domenichini, M.C. Marco de Lucas,P. Sibillot, S. Bourgeois, M. Sacilotti, Surf. Coat. Technol. 125 (2000) 396.
    38. Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films 440 (2003) 66.
    39. M. Lottiaux, C. Boulesteix, G. Nihoul, F. Varnier, F. Flory, R. Galindo, E. Pelletier, Thin Solid Films 170 (1989) 107.
    40. J.A. Thornton, J. Vac. Sci. Technol. 11 (1974) 666.
    41. A. Bittar, D. Cochrane, S. Caughley, J. Vac. Sci. Technol. A15(2) (1997) 223.
    42. N.J. Ianno, H. Enshashy, R.O. Dillon, Surf. Coat. Technol. 155 (2002) 130.
    43. F. Vaz,, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469-470 (2004) 11.
    44. L. Cunha,, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Surf. Coat. Technol. 200 (2006) 2917.
    45. S. Collard, H. Kupfer, W. Hoyer, G. Hecht, Vacuum 55 (1999) 153.
    46. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitora, Thin Solid Films 197 (1991) 117.
    47. U. C. Oh and J. H. Je, J. Appl. Phys. 74 (3) (1993) 1692.
    48. J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, J. Appl. Phys. 81(9) (1997) 6126.
    49. H. Yumoto, M. Ishihara, J. Jpn. Assoc. Cryst. Growt. 23 (1996) 382.
    50. Y.M. Chen, G.P. Yu, J.H. Huang, Surf. Coat. Technol. 141 (2001) 156.
    51. Carl Carney and Delcie Durham, J. Vac. Sci. Technol. A17(5) (1999) 2859.
    52. J-S. Chun, I. Petrov, and J. E. Greene, J. Appl. Phys. 86(7) (1999) 6126.
    53. P. Patsalas, C. Chartitidis, and L. Logothetidis, Surf. Coat. Technol. 125 (2000) 335.
    54. S. Kodambaka, V. Petrova, A. Vailionis, P. Desjardins, D. G. Cahill, I. Petrov, and J. E. Greene, Thin Solid Films 392 (2001) 164.
    55. D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greenea, S. Kodambaka, J. Appl. Phys. 93(11) (2003) 9086.
    56. D. Pilloud , A.S. Dehlinger , J.F. Pierson , A. Roman , L. Pichon, Surf. Coat. Technol. 174-175 (2003) 338.
    57. Henry Windischman, Crit. Rev. Solid State Mat. Sci. 17(6) (1992) 547.
    58. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167 (2003) 59.
    59. M. Tavi, O. Forsen, and J. Aromaa, Mater. Sci. Forum. 44/45 (1989) 15.
    60. A. Delblanc, M. Herranen, H. Ljungcrantz, J-O. Carlsson, J-E. Sundgren, Surf. Coat. Technol. 91 (1997) 208.
    61. P. Scherrer, Gott. Nachr. 2 (1918) 98.
    62. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233.
    63. G. G. Stoney, Proc. R. Soc. Lond. A82 (1909) 172.
    64. Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf. Sci. Eng. 126 (2004) 10.
    65. C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
    66. E. TiiRiiK and A. J. Perry, Thin Solid Films 153 (1987) 37.
    67. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564.
    68. Naresh C. Saha and Hadand G. Tompkins, J. Appl. Phys. 72 (7) (1992) 3072.
    69. John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS and AES” , John Wiley & Sons Ltd., (2003) p.64.
    70. M. Matsuoka, S. Isotani, J. C. R. Mittani, and J. F. D. Chubaci, J. Vac. Sci. Technol. A 23(1) (2005) 137.
    71. http://webbook.nist.gov/chemistry/
    72. L. Wickikowski, B Kusz, L. Murawaki, K. Szaniawska, and B. Susla, Vaccum 54 (1999) 221.
    73. J. Pouilleau, D. Devilliers, F. Garrido, S, Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B 47 (1997) 235.
    74. G. S. Bales and A. Zangwill, J. Vac. Sci. Technol. A9 (1) Jan/Feb (1991) 145.
    75. E. Vogelzang, J. Sjollema, H.J. Boer, J.T.M. De. Hosson, J. Appl. Phys. 61(9) (1987) 4606.
    76. A.K. Gupta and J H Leck, Vacuum (25) 362-372.
    77. Yuya Kajikawa, Suguru Noda, and Hiroshi Komiyama, J. Vac. Sci. Technol. A21(6) Nov/Dec (2003) 1943.
    78. Wei-Yu Ho, Cheng-Hsun Hsu, Dung-Hau Huang, Yen-Ping Cheng, Yen-Chun Lin, Chi-Lung Chang, Surf. Coat. Technol. 188-189 (2004) 129.
    79. C.P. Mulligan, D. Gall, Surf. Coat. Technol. 200 (2005) 1495.
    80. S. H. Mohamed, O. Kappertz, J. M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, Phys. Stat. Sol. (a) 201 No.1 (2004) 90.
    81. J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Surf. Coat. Technol. 195 (2005) 204.
    82. I.A. Ovid’ko, Science 295 (2002) 2386.
    83. J. Schiotz, Karsten. W. Jacobsen, Science 301 (2003) 1357.
    84. Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, S. X. Mao, Science 305 (2004) 654.
    85. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140 (2001) 206.
    86. C.-S. Shin, S. Rudenja, D. Gall, N. Hellgren, T.-Y. Lee, I. Petrov, J. E. Greene, J. Appl. Phys. 95(11) (2004) 356.
    87. Maria Nordin, Merja Herranen, Sture Hogmark, Thin Solid Films 348 (1999) 202.
    88. Fengqun Lang, Zhiming Yu, Surf. Coat. Technol. 145 (2001) 80.
    89. U. K. Wiiala, I. M. Penttinen, Surf. Coat. Technol. 41 (1990) 191.
    90. N. Heide, W. Schultze, Nucl. Instr. and Meth. in Phys. Res. B 80/81 (1993) 467.
    91. Harish C. Barshilia, M. Surya Prakash, Aithu Poojari, K.S. Rajam, Thin Solid Films 460 (2004) 133.
    92. Tsung-Kuang Yen, Chang-Tong Liu, Chuen-Horng Tasi, J. Nucl. Sci. Technol. 42(9) (2005) 809.
    93. J.-H. Huang, C.-Y. Hsu, S.-S Chen, G.-P. Yu, Mater. Chem. Phys. 77 (2002) 14.
    94. Teer DG, Transactions of nonferrous metals society of china Sp. Iss.2, 14 (2004) 42.
    95. P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159.
    96 Kai-Hsuan Chang, “A Study of Nanocrystalline Zr(N,O) Thin Films Deposited by Ion Plating” 2006, Master Thesis, National Tsing Hua University, R.O.C.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE