簡易檢索 / 詳目顯示

研究生: 陳國樑
論文名稱: 光子晶體雷射的熱特性分析
指導教授: 吳孟奇
施閔雄
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 70
中文關鍵詞: 光子晶體雷射熱特性
外文關鍵詞: photonic crystal lasers, thermal properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光子晶體缺陷雷射具有高品質因數和極小的模態體積,再加上製程技術的長遠進步,光子晶體缺陷雷射以成為近年來光電研究中熱門的領域之一.傳統的光子晶體缺陷雷射都是以懸浮結構為主.所謂的懸浮結構即為垂直方向上利用相差較大的折射率來侷限垂直方向的光.但是由於空氣的熱傳導係數較小,熱的傳遞不佳,造成此種結構無法在常溫下連續操作,但是對於未來要應用在積體光路,連續的光源是必要的,為了解決這樣的問題,在此研究中我們利用有線元素分析法模擬得知利用藍寶石可以作為散熱所需的基板,再加上藍寶石有接近空氣的折射率,使得垂直方向的的侷限效果-相較於懸浮結構-不會相差太多,此外也利用此種方式計算出不同結構的熱時間常數,更進一步得到熱阻,進而分析這兩種不同結構的熱特性.


    With high quality factors and ultrasmall mode volume, on the other hand, the improvements of fabrication, photonic crystal defect laser has become one of hot issues in electro-photon research in recent years. Typical photonic crystal defect laser is made as suspend-membrane structure. Suspend-membrane structure means using refractive index difference to confine vertical light. Due to low thermal conductivity of air, this kind of structure has poor heat dissipation so that it can not be operated in continuous wave (CW) condition, however, for future application of integrate photonic circuit, continuous wave operation is needed. To solving this problem, we using finite element method (FEM) and found using sapphire to be a heat sink, in addition, index difference between sapphire and air is small so that vertical confinement will not decrease a lot. Furthermore, we analyzed the thermal properties by using FEM to calculate thermal time constant and get the thermal resistance between these two types of structures.

    Content Abstract (inChinese) I Abstract (in English) II Acknowledgements III List of figures IV List of tables vii Chapter 1 Introductio......................................1 1-1What is photonic crystal................................1 1-1-1 Development of photonic crystal......................1 1-1-2 Introduction of the photonic crystal.................2 1-1-3 Characteristic of photonic crystal...................3 1-1-4 Calculation of photonic crystal band structure.......7 1-2Two-dimensional photonic crystal defect laser..........12 1-3Motivation and overview of this thesis.................14 Chapter 2 Basic theory of heat transfer...................16 2-1 Introduction of heat transfer.........................16 2-2 Heat conduction equation and thermal conductivity.....17 2-2-1 Heat conduction equation (Fourier’s Law)...........17 2-2-2 Thermal conductivity................................19 Chapter 3 Basic theory of Finite Element Method (FEM).....21 3-1 Introduction of Finite Element Method (FEM)...........21 3-1-1 Brief Historical Background.........................22 3-1-2 Basic steps in the finite element method............23 3-2 Algorism of Finite Element Method (FEM)...............24 3-3 Advantages of Finite Element Method (FEM).............33 3-4 Conclusions...........................................34 Chapter 4 Fabrication process.............................35 4-1 Introduction..........................................35 4-2 Direct wafer bonding process..........................36 4-3 Electron beam lithography process.....................39 4-4 ICP-RIE etching process...............................40 4-5 conclusion............................................41 Chapter 5 thermal model and thermal properties of sapphire-bonded photonic crystal defect laser......................42 5-1 Introduction..........................................42 5-2 thermal properties and comparison of D3 on sapphire-bonded structure and suspend membrane structure...........48 5-2-1 Effects of D3 photonic crystal lasers for different structures through FEM simulations........................48 5-2-2 Lasing data of D3 cavities on different structures..55 5-2-3 Thermal resistance of D3 cavities on different structures................................................57 5-3 thermal properties comparison of point shift and D3 cavity on sapphire-bonded structure.......................60 5-3-1 Defect size Effects of on sapphire-bonded structure through FEM simulations...................................60 5-3-2 Thermal resistance of point shift cavities sapphire substrate.................................................63 5-3-3 Lasing data of point shift cavities on sapphire.....64 5-4 conclusion............................................67 Chapter 6 Summary and outlook............................ 68 References................................................70

    Reference

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.,58,2059 (1987)
    [2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices”, Phys. Rev. Lett.,58,2486 (1987)
    [3] K. M. Ho et al. “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett.,65,3152 (1990)
    [4] TF Krauss “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths”, nature. 383 24 (1996)
    [5] http://www.lostseaopals.com.au/opals/index.asp
    [6] L. P. Biro et al, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E. 67, 021907, (2003)
    [7] J. D. Joannopoulos et al. “Photonic Crystals”, Princeton University Press, (1995)
    [8] J.D Joannopoulos “Photonic crystal, modeling the flow of light”
    [9] Michael Rohlfing: Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets, Phys. Rev. B48 (1993) 17791-17805
    [10] O. Painter et al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science,284,1819 (1999)
    [11] J. K. Hwang “Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6 _m” IEEE Photon. Technol. Lett, 12, 10 ( 2000)
    [12] J. Limpert,”Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation”, Vol. 11, No. 22 / OPTICS EXPRESS 2987 (2003)
    [13] http://en.wikipedia.org/wiki/Thermal_radiation
    [14] I Dewitt “fundamentals of heat and mass transfer”
    [15] W Kuntjoro “An introduction to the finite element method”
    [16] lecture note of finite element method from department of applied mathematics, national Chiao Tung university, Hshinchu, Taiwan
    [17] J. Piprek “Minimum temperature sensitivity of 1.55 mm vertical-cavity lasers
    at 230 nm gain offset” Appl. Phys. Lett. 72, 15
    [18] O. J. Painter “Room Temperature Photonic Crystal Defect Lasers at Near-Infrared Wavelengths in InGaAsP” JOURNAL OF LIGHTWAVE Tech., 17, 11
    [19] M. H. Shih et al “Room temperature continuous wave operation and characterization of photonic crystal nanolaser on a sapphire substrate” J. Phys. D: Appl. Phys. 42 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE