簡易檢索 / 詳目顯示

研究生: 賴群峰
Chun-Feng Lai
論文名稱: 整合UV膠微透鏡及MUMPs元件之SOI微光學平台
Integration of UV Curable Polymer Lens with MUMPs Structure on SOI Wafer
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: UV膠微透鏡微光學平台
外文關鍵詞: UV curable polymer lens, silicon optical bench
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學元件在光通訊、光儲存技術、顯示器系統以及生醫流體檢測等領域有重要的應用,然而傳統的光學元件組裝複雜度高、體積與質量較大且元件之間光束對準較不易,這些因素皆使得系統成本增加。近年來應用微機電系統技術所製作之微光學元件,體積更小、質量更輕,因此反應速度更快,且使用半導體製程製作更具有批量製造的優點。因此利用微機電系統技術製作出各式微光學元件,在單一晶片上架構出自由空間微光學平台以完成一個高積集度的微光學系統,將可以大幅度地整合各種模組功能於單一晶片上。

    本研究便以微光學元件中之微透鏡為主,在SOI晶片上整合UV膠微透鏡與MUMPs元件以提供一富有彈性與多樣性的微光學平台。採用UV膠點膠方式製作微透鏡具有許多優點。第一,其製作方式最為簡單(直接點膠且曝照UV光即可,也不需要光罩),且在表面張力作用下具有良好的表面性質。第二,可在結構製作完成之後再以點膠方式製作微透鏡,因此與其他元件的整合性大幅提高。微光學平台部分,在SOI晶片上利用面型微加工製程製作出MUMPs薄膜結構元件,並整合UV膠微透鏡。其特點如下:第一,SOI晶片可以利用體型微加工製程製作厚結構元件以提供較大剛性。第二,可整合MUMPs薄膜結構的多樣性設計。第三,UV焦微透鏡與元件的整合性高。因此本研究整合UV膠微透鏡與MUMPs元件之SOI微光學平台具有元件設計多樣化、製作彈性且簡單的優點。


    Micro lenses can play important roles in many micro optical systems, which applications are ranging from optical communication, optical storage, display, to biotechnology. In micro lenses fabrication, there are many advantages for UV curable polymer lens, such as high transmission, low surface roughness, and the most important thing is easy to fabricate (i.e. drip and solidification) and to integrate with other structures. However, the integration of UV curable polymer lens with complicated structures to provide various components hasn’t been reported. Accordingly, this work presents a silicon optical bench (SiOB) consisted of UV curable polymer lens, thin film MUMPs components, and thick SOI structures. For the reason that the MUMPs process is regarded as the most popular fabrication for MEMS devices and the thin film poly-Si surface micromachining also provides variety. Moreover, there are good properties for bulk silicon as actuator and fiber housing. So, the integration of UV curable polymer lens with MUMPs structure on SOI wafer is a good choice for optical application. In this work, we will demonstrate a bulk silicon optical bench with bulk silicon actuator, bulk silicon fiber clamp, and drip UV curable polymer on thin film poly-Si structure. The characterization of lens including transmission, roughness, and other optical properties will also be measured.

    目錄 I 圖目錄 III 表目錄 IV 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2.1 微透鏡 2 1-2.2 微結構組裝機制 5 1-2.3 微光學平台 6 1-3 研究目標 8 第二章 設計與分析 20 2-1 微透鏡設計 20 2-2 多晶矽薄膜元件設計 24 2-3 單晶矽元件設計 25 第三章 製程與結果 33 3-1 製程步驟 33 3-2 製程結果 35 3-3 製程問題與討論 36 第四章 實驗測試與結果 44 4-1 點膠參數的影響 44 4-2 微透鏡曲率公式驗證 45 4-3 微透鏡光學品質量測 47 4-4 熱致動器性能量測 48 第五章 結論 67 5-1 本文貢獻 67 5-2 未來工作 68 第六章 參考文獻 72

    [1] Y. Fu, N.K.A. Bryan, and O. N. Shing, “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Letters, 12, pp 1213-1215, 2000.

    [2] J.S. Leggatt, and M.C. Hutley, “Microlens arrays for interconnection of singlemode fiber arrays,” IEEE Electronics Letters, 27, pp 238-240, 1991.

    [3] 李家雯,“應用於光學讀寫頭之微聚焦平台,”國立清華大學動力機械工程學系碩士論文,2003.

    [4] L.Y. Lin, S.S. Lee, K.S.J. Pister, and M.C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” IEEE Electronics Letters, 30, pp 448-449, 1994.

    [5] S. Sinzinger, and J. Jahns, Microoptics. 1st Ed., New York, NY: WILEY-VCH, 1999.

    [6] M.C. WU, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, 85, pp 1833-1856, 1997.

    [7] P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photonics Letters, 9, pp 1367-1369, 1997.

    [8] H.S. Alhokail, “Fabrication of photoresist microlens arrays,” Proceedings of the Microelectronics International Conference, pp 49-52, 1998.

    [9] J. Shimada, O. Ohguchi, and R. Sawada, ”Microlens fabricated by the planar process,” Journal of Lightwave Technology, 9, pp 571-576, 1991.

    [10] Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photonics Letters, 12, pp 507-509, 2000.

    [11] C.S. Lee, and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, 88, pp 87-90, 2001.

    [12] S.-K. Lee, K.-C. Lee, and S.S. Lee, “Microlens fabrication by the modified LIGA process,” IEEE MEME’02, Las Vegas, Nevada, January, 2002, pp 544-547.

    [13] S.K. Lee, D.S. Kim, S.S. Yang, S.S. Lee, and T.H. Kwon, “Microlens fabrication by the modified LIGA process and its modeling and analysis,” Optical MEMS Conference, Aug, 2002, pp 77-78.

    [14] H.S. Lee, S.-K. Lee, T. H. Kown, and S.S. Lee, “Microlenses array fabrication by hot embossing process,” Optical MEMS Conference, Aug, 2002, pp 73-74.

    [15] J. Hsieh, C.-j. Wen, H.-H. Lin, H.-L. Lin, Y.C. Hu, H.-Y. Chou, C.-F. Lai, W. Fang, “The study on SU-8 micro cylindrical lens for laser induced fluorescent application,” Optical MEMS Conference, Aug, 2003, pp 65-66.

    [16] N.E.S. Farrington, and S. Iezekiel, “Investigations into the use of SU-8 in the fabrication of a micro-optical bench for hybrid optoelectronic integration and packaging,” IEEE High Frequency Postgraduate Student Colloquium, September, 2001, pp 164-167.

    [17] D.L. MacFarlane, V. Narayan, J.A. Tatum, W.R. Cox, T. Chen, and D.J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Letters, 6, pp 1112-1114, 1994.

    [18] 強玲英, 楊啟榮,“點膠滴置法製作折射式微透鏡陣列及其複製性之研究,”第十七屆機械工程研討會, 高雄, 民國89年12月, 第369至375頁.

    [19] K.-H. Jeong, and L. P. Lee, “A new method of increasing numerical aperture of microlens for biophotonic MEMS,” Annual International IEEE-EMBS Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, pp 380-383.

    [20] H. Choo, and R.S. Muller, “Optical properties of microlenses fabricated using hydrophobic effects and polymer jet printing technology,” Optical MEMS Conference, Aug, 2003, pp 169-170.

    [21] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “New fabrication technology of convex and concave microlens using UV curing method,” LEOS99 Annual Meeting, WDD: new waveguide and Interconnect technology session, 1999, pp 639-640.

    [22] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photonics Letters, 11, pp 439-441, 1999.

    [23] 何亦平,“微結構自組裝技術之研究,” 國立清華大學動力機械工程學系碩士論文,2002.

    [24] Y.C. Tai, L.S. Fan, and R.S. Muller, “IC-processed micro-motors: design, technology, and testing,” IEEE MEMS’89 , Salt Lake City, UT, 1989, pp 1-6.

    [25] R.T. Chen, H. Nguyen, M.C. Wu, “A high-speed low-voltage stress-induced micromachined 2x2 optical switch,” IEEE Photonics Letters, 11, pp 1396-1398, 1999.

    [26] R.R.A. Syms, “Surface tension powered self-assembly of 3-D micro-optomechanical structures,” Journal of Microelectromechanical Systems, 8, pp 448-455, 1999.

    [27] R.R.A. Syms, “Refractive collimating microlens arrays by surface tension self-assembly,” IEEE Photonics Letters, 12, pp 1507-1509, 2000.

    [28] M.C. Wu, L.Y. Lin, S.S. Lee, and K.S.J. Pister, “Micro-machined free-space integrated micro-optics,” Sensors and Actuators A, 50, pp 127-134, 1995.
    [29] C.R. King, L.Y. Lin, and M.C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photonics Letters, 8, pp 1349-1351, 1996.

    [30] R.S. Muller, and K.Y. LAU, “Surface-micromachined microoptical elements and systems,” Proceedings of the IEEE, 86, pp 1705-1719, 1998.

    [31] G.E. Blonder, “Silicon optical bench research at AT&T bell laboratories,” Lasers and Electro-Optics Society Annual Meeting Conference, Nov, 1990, pp 350-353.

    [32] J. Goodrich, “A silicon optical bench approach to low cost high speed transcievers,” Electronic Components and Technology Conference, May, 2001, pp 238-241.

    [33] J.W. Osenbach, M.F. Dautartas, E. Pitman, C. Nijander, M. Brady, R.K. Schlenker, T. Butrie, S.P. Scrak, B.S. Auker, D. Kern, S. Salko, D. Rinaudo, C. Whitcraft, and J.F. Dormer, “Low cost/high volume laser modules using silicon optical bench technology,” Electronic Components and Technology Conference, May, 1998, pp 581-587.

    [34] P.M. Harrison, R. Cann, and D. Spear, “Silicon V-groove technology in the volume production of optical devices,” Lasers and Electro-Optics Society Annual Meeting Conference, Nov, 1997, pp 134-135.

    [35] M.S. Cohen, M.J. Cordes, S.A. Cordes, J.D. Gelorme, D.M. Kuchta, D.L. Lacey, J. Rosner, J.L. Speidell, “ Lithographically fabricated fiber guides for optical subassemblies,” Electronic Components and Technology Conference, May, 1998, pp 229-237.
    [36] S. Kwon, and L.P. Lee, “Stacked two dimensional micro-Lens scanner for micro confocal imaging array,” IEEE MEMS’02, Las Vegas, Nevada, January, 2002, pp483-486.

    [37] S. Kwon, V. Milanovic, and L.P. Lee, “Vertical microlens scanner for 3D imaging,” Technical Digest: Solid-State Sensor and Actuator Workshop, Hilton Head Isl., SC, Jun, 2002.

    [38] 施瑄芳,“SOI晶片整合面型微加工技術於微光學平台之研究,”國立清華大學動力機械工程學系碩士論文,2003.

    [39] S. Hollar, A. Flynn, S. Bergbreiter, and K.S.J. Pister, “Robot leg motion in a planarized-SOI, 2 poly process,” Sensors and Actuators, Hilton Head Island, S.C., June, 2002.

    [40] J. Kubby, J. Calamita, J. Chang, J. K. Chen, P. Gulvin, C.-C. Lin, R. Loftus, B. Nowak, Y.S., A. Tran, D. Burns, J. Bryzek, J. Gilbert, C. Hsu, T. Korsmeyer, A. Morris, T. Plowman, V. Rabinovich, T. Daiber, Proceedings of SPIE, 4293, pp 32-45, 2001.

    [41] R.R.A. Syms, “Equilibrium of hinged and hingeless structures rotated using surface tension forces,” Journal of Microelectromechanical Systems, 4, pp 177-183, 1995.

    [42] R.R.A. Syms, “Self-assembly of three dimensional microstructures using rotation by surface tension forces,” IEEE Electronics Letters, 29, pp 662-664, 1993.

    [43] F.K. Hansen, “Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles,” Journal of Colloid and Interface Science, 160, pp 209-217, 1993.

    [44] Y. Gu, and D. Li, “A model for a liquid drop spreading on a solid surface,” Colloids and Surfaces A, 142, pp 243-256, 1998.

    [45] B. Zhang, and A. Nakajima, “Nanometer deformation caused by the laplace pressure and the possibility of its effect on surface tension measurements,” Journal of Collide and Interface Science, 211, pp 114-121, 1999.

    [46] Y.B. Gianchandani, and K. Najafi, “Bent-beam strain sensors,” Journal of Microelectromechanical Systems, 5, pp 52-58, 1996.

    [47] L. Que, J.S. Park, and Y.B. Gianchandani, “Bent-beam electro-termal actuators for high force applications,” IEEE MEMS’99, January, 1999, pp 31-36..

    [48] M.J. Sinclair, “A high force low area MEMS thermal actuator,” Thermal and Thermomechanical Phenomena in Electronic Systems, May, 2000, pp 127-132.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE