研究生: |
吳書瑋 Shu-Wei Wu |
---|---|
論文名稱: |
組織不均質及多葉式準直儀所造成能譜改變對蒙地卡羅方法模擬強度調控放射治療計畫的影響 Impact of tissue heterogeneity and spectral change through MLC on a Monte Carlo based IMRT simulation system |
指導教授: |
董傳中
Chuan-Jong Tung 李宗其 Chung-Chi Lee 趙自強 Tsi-Chian Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 多葉式準直儀 、蒙地卡羅模擬 、電子式影像擷取系統 、組織非均質 、強度調控放射治療 、能譜變化 |
外文關鍵詞: | MLC, Monte Carlo simulation, EPID, tissue heterogeneity, IMRT, spectral change |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在放射治療領域中,治療計畫系統(TPS)劑量計算理論會直接影響病人所接受的劑量,而在臨床上,大多採用簡化的方法來加快劑量計算速度。因此,在本研究中將利用EPID-蒙地卡羅系統作為劑量計算的依據,不僅可作為獨立於治療計畫系統的劑量計算系統,還可將兩套系統計算結果相互比較其劑量計算理論差異。在EPID-蒙地卡羅系統中,利用EPID所得強度映圖(efficiency map)輸入模擬系統中來取代實際上MLC移動所產生的射束調控效果,並且利用人體CT影像作為引入人體組織構造資訊的依據,在組織非均質劑量計算中,蒙地卡羅方法能夠真實根據不同組織劑量特性來進行劑量計算,故能更真實描述人體劑量分佈。此外由於利用強度映圖取代MLC,因此必須確認MLC對於總體劑量影響程度,作為使用此套系統的參考資訊。研究結果可以得知,MLC對於總體劑量影響不大,而加入人體非均質特性的EPID-蒙地卡羅系統,不論是開放式照野或是IMRT照野,其人體劑量分佈趨勢和現今商業化的治療計畫系統相似,甚至在組織介面區域更能表現出蒙地卡羅劑量計算的優越性,因此EPID-蒙地卡羅系統具有成為新一代劑量驗證系統的潛力。
1. 林慕涵. 強度調控放射治療線上病患治療劑量驗證系統. 國立清華大學碩士論文 2005.
2. McDermott LN, Wendling M, van Asselen B, et al. Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification. Med Phys 2006;33:3921-3930.
3. Elmpt WJCv, Nijsten SMJJG, Mijnheer BJ, et al. Experimental verification of a portal dose prediction model. Medical Physics 2005;32:2805-2818.
4. van Elmpt WJ, Nijsten SM, Schiffeleers RF, et al. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images. Med Phys 2006;33:2426-2434.
5. Wouter JCvE, Sebastiaan MJJGN, Andre LAJD, et al. Treatment verification in the presence of inhomogeneities using EPID-based three-dimensional dose reconstruction. Medical Physics 2007;34:2816-2826.
6. Li W, Siebers JV, Moore JA. Using fluence separation to account for energy spectra dependence in computing dosimetric a-Si EPID images for IMRT fields. Med Phys 2006;33:4468-4480.
7. Nikos Papanikolaou JJB, Arthur L. Boyer, Constantin Kappas, Eric Klein, T. Rock Mackie, Michael Sharpe, Jake Van Dyk. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No. 85 2004.
8. Constantinou C, Harrington JC, DeWerd LA. An electron density calibration phantom for CT-based treatment planning computers. Med Phys 1992;19:325-327.
9. Kawrakow I, Fippel M, Friedrich K. 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 1996;23:445-457.
10. Schneider W, Bortfeld T, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol 2000;45:459-478.
11. Mark RA, Jeffrey VS, Jong OK, et al. A method for determining multileaf collimator transmission and scatter for dynamic intensity modulated radiotherapy. Medical Physics 2000;27:2231-2241.
12. Jong Oh K, Jeffrey VS, Paul JK, et al. A Monte Carlo study of radiation transport through multileaf collimators. Medical Physics 2001;28:2497-2506.
13. Heath E, Seuntjens J. Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator. Phys Med Biol 2003;48:4045-4063.
14. Tyagi N, Moran JM, Litzenberg DW, et al. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation. Med Phys 2007;34:651-663.
15. Josephine C, Cynthia FC, Olivier M, et al. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry. Medical Physics 2006;33:584-594.
16. Parker RP, Hobday PA, Cassell KJ. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Phys Med Biol 1979;24:802-809.
17. Watanabe Y. Derivation of linear attenuation coefficients from CT numbers for low-energy photons. Phys Med Biol 1999;44:2201-2211.
18. Battista JJ, Santon LW, Bronskill MJ. Compton scatter imaging of transverse sections: corrections for multiple scatter and attenuation. Phys Med Biol 1977;22:229-244.
19. B.R.B. Walters DWOR. DOSXYZnrc User Manual. NRCC Report PIRS-794 2007.
20. Ma CM, Mok E, Kapur A, et al. Clinical implementation of a Monte Carlo treatment planning system. Med Phys 1999;26:2133-2143.
21. du Plessis FC, Willemse CA, Lotter MG, et al. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients. Med Phys 1998;25:1195-1201.
22. Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report 44 1989.
23. W. S. Snyder MJC, E. S. Nasset, L. R. Karhausen, G. Parry Howells, I. H. Tipton. Report of the Task Group on Reference Man. INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION No. 23 1974.
24. D. W. O. Rogers BW, I. Kawrakow. BEAMnrc User Manual. NRCC Report PIRS-0509(A)rev K 2005.
25. Battista JJ, Bronskill MJ. Compton scatter imaging of transverse sections: an overall appraisal and evaluation for radiotherapy planning. Phys Med Biol 1981;26:81-99.