簡易檢索 / 詳目顯示

研究生: 胡耀仁
Hu, Yao-Ren
論文名稱: 蒙地卡羅分子動力學模擬分析與 CO2吸附觸媒位置預測
Monte Carlo Molecular Dynamics Simulation and CO2 Adsorption Sites Prediction
指導教授: 洪哲文
Hong, Che-Wun
口試委員: 趙怡欽
Chao, Yei-Chin
陳玉彬
Chen, Yu-Bin
張博凱
Chang, Bor-Kae
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 蒙地卡羅分子動力學吸附
外文關鍵詞: Monte Carlo, Molecular Dynamics, Adsorption
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子模擬一直被用來計算分析材料性質以取代成本昂貴或所需環境嚴苛的實驗,如何準確模擬計算出與實驗值誤差較小的結果一直是科學家所努力的方向。而在這些模擬方法中分子動力學和蒙地卡羅法是較常被使用的模擬方法,分子動力學透過解牛頓方程產生確定性隨著時間變化的粒子位置但也因此較費時,同時在較高粒子數的計算上容易使計算電腦當機;而蒙地卡羅法則透過亂數產生器進行隨機運動,以能量作為移動的篩選,因此常被用來計算多粒子的模擬。
    熔融鹽 (molten salt)是目前儲熱材料較佳的選擇,是許多無機鹽類的總稱,在固態狀態下為離子晶體,高溫加熱後會熔化變成液態的離子熔融鹽。本研究模擬計算硝酸鈉NaNO3,並透過結果比較各方法差異,希望找出較佳模擬方式。鋁參雜石墨烯(Al-doped Graphene, AlDG)目前常被用來進行二氧化碳捕獲,以減少和再利用二氧化碳來減緩溫室效應,本文利用蒙地卡羅法模擬搜索出二氧化碳CO2 在鋁參雜石墨烯(Al-doped Graphene, AlDG)基底中最穩定的吸附位置,以利接下來對二氧化碳還原再利用機制的研究。
    本論文在熔融鹽模擬計算中,利用結合蒙地卡羅法嘗試補足分子動力學不足之處,在模擬過程利用定分子數等溫等壓系綜(NPT ensemble)以符合真實原子狀態,得出在不同溫度下熔融鹽的性質並比較不同粒子數和方法時的結果差異,以找出較準確的模擬方法。在二氧化碳吸附於鋁參雜石墨烯模擬計算中,則透過勢能方程式計算能量再利用蒙地卡羅方法在定分子數等溫等體積系綜(NVT ensemble)中篩選找出二氧化碳在基底材料鋁參雜石墨烯上的最小能量吸附組態,得出穩定的吸附位置。期望以這些模擬計算取代昂貴繁雜的實驗,並提供幫助相關研究做更進一步的探討。


    Molecular simulation has been employed to calculate the properties of materials to replace expensive and tedious experiments, especially during parametric study. In those simulation methodologies, molecular dynamics (MD) and Monte Carlo (MC) methods are most commonly used simulation methods. Molecular dynamics simulation calculates the deterministic particle position with respect to time by solving the Newton equation, but it is also more time consuming and is easy to crash the computer when involved with large number of particles. Monte Carlo method performs random motion prediction through a random generator. It needs less memory and less computation time to deal with a multi-particle system.
    Molten salts, a general term for inorganic salts, are a good choice for thermal storage and heat transfer fluids. They are normally ionic crystals in a solid state and melt into a liquid ionic molten salt after heating at a high temperature. This thesis uses sodium nitrate to perform MD and MC simulations, and compare them with experimental results to verify the accuracy and computational cost for each method. We found that MC is capable of dealing with millions of particles and is within an acceptable accuracy. Hence, we start to develop the MC algorithm to tackle the problem of gases absorbed on the Al-doped Graphene (AlDG), which is currently used to capture carbon dioxide to reduce to useful fuels. We use the MC simulation to predict the most stable adsorption position of carbon dioxide on the AlDG substrate, so as to study the mechanism of carbon dioxide reduction. Monte Carlo method was used to screen the minimum energy adsorption configuration of carbon dioxide on the AlDG using the NVT ensemble. This is a preliminary work to prepare further study using more expensive quantum simulation of the catalytic reaction which needs the initial position of each CO2 position with respect to the AlDG.

    摘要……….. I Abstract…………………………………………………………………………… II 誌謝……………………………………………………………………………….III 圖目錄 VI 表目錄 VIII 符號定義 IX 第一章 緒論 1 1.1. 前言 1 1.2. 聚光太陽能熱發電構造 2 1.2.1. 聚光技術 3 1.2.2. 熱能傳遞 5 1.2.3. 儲熱與發電 6 1.3. 儲熱材料 6 1.4. 碳捕獲(carbon capture)與二氧化碳再利用 10 1.5. 石墨烯參雜鋁(Al-doped graphene) 11 1.6. 文獻回顧 12 1.6.1. 熱傳導率 14 1.7. 研究動機與目的 15 第二章 研究方法 16 2.1. 蒙地卡羅模擬 16 2.1.1. 細部平衡(detailed balance) 16 2.1.2. Metropolis criterion 17 2.1.3. Metropolis MC 演算法 19 2.1.4. 虛擬亂數產生器(pseudo random number generator) 19 2.2. 分子動力學 (Molecular Dynamics, MD) 20 2.2.1. 分子動力學模擬流程 20 2.3. 分子間交互作用力勢能 22 2.3.1. 鍵結作用力勢能 23 2.3.2. 非鍵結作用力勢能 26 2.4. 溫控器(Thermostat) 28 2.5. 邊界條件(Boundary condition) 31 第三章 模擬方法 33 3.1. 模擬流程 33 3.2. 模擬工具 33 3.3. 模型建構 34 3.4. 蒙地卡羅演算法 35 3.5. 分子動力學 36 3.6. 數據後處理 37 3.6.1. 均方位移 (Mean Square Displacement, MSD) 37 3.6.2. 熱傳導率 (Thermal Conductivity) 38 3.6.3. 比熱 (Specific Heat) 39 第四章 結果與討論 40 4.1. 熔融鹽 40 4.1.1. 建構模型與設定條件 40 4.1.2. 材料密度模擬 42 4.1.3. 均方位移(MSD) 44 4.1.4. 熱容量 45 4.1.5. 熱傳導率 47 4.2. 氣體吸附於參雜鋁石墨烯 48 4.2.1. 建構模型與設定條件 48 4.2.2. 氣體分子在鋁參雜石墨烯(平面)上吸附位置 50 4.2.3. 氣體分子在鋁參雜石墨烯(突起)上吸附位置 56 4.2.4. 二氧化碳轉化為甲醇和水 …………………………………..61 4.2.5. 二氧化碳在不同尺寸鋁參雜石墨烯(突起)上吸附位置 65 第五章 結論與未來工作建議 67 5.1. 結論 67 5.2. 未來工作建議 68 參考文獻 69

    [1] Dunn, R. I., Hearps, P. J., & Wright, M. N. Molten-salt power towers: newly commercial concentrating solar storage. Proceedings of the IEEE,100(2), 504-515. 2012
    [2] Kurup, P., & Turchi, C. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM) (No. NREL/TP-6A20-65228). NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)). 2015
    [3] Reddy, K. S., & Veershetty, G. Viability analysis of solar parabolic dish stand-alone power plant for Indian conditions. Applied Energy, 102, 908-922. 2013
    [4] Coscia, K., Elliott, T., Mohapatra, S., Oztekin, A., & Neti, S. Binary and ternary nitrate solar heat transfer fluids. Journal of Solar Energy Engineering,135(2), 021011. 2013
    [5] Liu, M., Saman, W., & Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy Reviews,16(4), 2118-2132. 2012
    [6] http://www.nrel.gov
    [7] AntoniGil,MarcMedrano, IngridMartorell, AnaLázaro, PabloDolado, BelénZalba, Luisa F.Cabeza State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization Renewable and Sustainable Energy Reviews Volume 14, Issue 1, January 2010, Pages 31-55
    [8] Erik C Combining molecular dynamics with Monte Carlo simulations: implementations and applications Theoretical Chemistry Accounts February 2013, 132:1320
    [9] Ge-ChuanQi Pan, Jing Ding, Weilong Wang ,Jianfeng Lu ,Jiang Li ,Xiaolan Wei Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage, International Journal of Heat and Mass Transfer Volume 103, December 2016, Pages 417-427
    [10] Ali Shokuhi Rad Vahid Pouralijan Foukolaei. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O, Synthetic Metals Volume 210, Part B, December 2015, Pages 171-178
    [11] Weidong Wang , Yuxiang Zhang, Cuili Shen, and Yang Chai, Adsorption of CO molecules on doped graphene:A first-principles study Applied Energy AIP ADVANCES 6, 025317 (2016)
    [12] Redkin, A., Zaikov, Y., Tkacheva, O., & Kumkov, S. . Molar thermal conductivity of molten salts. Ionics, 22(1), 143-149. 2016
    [13] Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society, 43(5), 461.1913
    [14] D. Frenkel and B. Smit, Understanding Molecular Simulation From Algorithms to Applications.2nd edition, 2001
    [15] 21. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19. 1995
    [16] https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html
    [17] O. Leenaerts, B. Partoens, F. M. Peeters, Physical Review B 2009, 79, 235440.
    [18] Elizabeth Escamill –Roa Javier Martin-Torresa . Ignacio Sainz-Díaza Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions Planetary and Space Science Volume 153, April 2018, Pages 163-171
    [19] Hongmin, Z.; Saito, T.; Sato, Y.; Yamamura, T.; Shimakage, K.; Ejima, T. Ultrasonic velocity and absorption-coefficient in molten alkalimetal nitrates and carbonates. J. Jpn. Inst. Metals 1991, 55, 937–944.
    [20] Takahashi, Y.; Sakamoto, R.; Kamimoto, M. Heat-capacities and latent heats of LiNO3, NaNO3 and KNO3. Int. J. Thermophys. 1988, 9, 1081–1090.
    [21] Omotani, T.; Nagashima, A. Thermal conductivity of molten salts, HTS and the lithium nitrate-sodium nitrate system, using a modified transient hot-wire method. J. Chem. Eng. Data 1984, 29, 1–3
    [22] Nagasaka, Y.; Nagashima, A. The thermal conductivity of molten NaNO3 and KNO3. Int. J. Thermophys. 1991, 12, 769–781.
    [23] Zhang, M., Lussetti, E., de Souza, L. E., & Müller-Plathe, F. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. The Journal of Physical Chemistry B, 109(31), 15060-15067. 2005
    [24] Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of chemical physics,106(14), 6082-6085. 1997

    QR CODE