研究生: |
温國宏 |
---|---|
論文名稱: |
膜厚對鈣摻雜鐵酸鉍鐵電與光伏特性研究 Films Thickness Dependence of Ferroelectric and Photovoltaic Properties of Calcium Doped Bismuth Ferrite |
指導教授: |
林志明
李信義 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 鐵酸鉍 、光伏效應 |
外文關鍵詞: | BiFeO3, photovoltaic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要在探討不同厚度下使用摻雜原子百分比5% 鈣(Ca)離子濃度鐵酸鉍(BiFeO3, BFO)薄膜所表現出的光伏效應,藉由各項儀器來觀察BFO薄膜的差異性,來推測影響光伏效應的可能原因與機制。
本實驗以磁控濺鍍法(RF-sputter)成長BFO薄膜以及上下電極於矽基板Si(100)上。利用場發射電子顯微鏡來觀察厚度是否符合實驗所設定,X光繞射儀來分析薄膜的結晶特性,X光反射儀與原子力顯微鏡觀察粗糙度,鐵電量測儀量測電滯曲線,使用405nm Laser量測光伏效應。
由BFO薄膜的XRD圖譜僅發現BFO ( 0 0 1) 與(0 0 2) 繞射峰,可知BFO薄膜具有良好的結晶性及明確的優選方位。由XRD圖譜也看出,隨著厚度增加,薄膜有應力釋放的現象。光反射儀與原子力顯微鏡結果顯示隨著厚度增加粗糙度也跟著變化,但是變化不大。電滯曲線的結果顯示,隨厚度的增加,薄膜的極化值有下降的趨勢。同時,光伏效應亦隨著膜厚增加而逐漸降低。當應力產生變化,晶格變形量改變,將導致偶極矩改變,影響薄膜內電場,致使效率明顯改變。此外,當厚度增加至100及150奈米時,上下電極間距大幅拉長,致使電子收集效率降低,以及正負電荷對在薄膜中移動時發生再結合或是散射現象機率提升,掩蓋薄膜光伏效應的呈現。
In this experiment, the photovoltaic effect with different film thickness of 5% Ca doped BiFeO3 thin films were investigated. The probable physical mechanism were carried out many different measurements which may affect the efficiency of the photovoltaic effect. The specimen of BFO thin films and the electrode were all deposited on Si(100) by RF magnetron sputtering. First, we grew LaNiO3 on Si(100) at 450 . Second, The 5% Ca doped BiFeO3 films were deposited on LaNiO3. Third, we deposited Pt or AZO to do measurements, respectively. Film thickness was estimated by SEM and X-ray reflectivity. Film crystallinity was carried out by X-ray diffraction measurement. The morphology was measured by atomic force microscope and X-ray reflectivity. The hysteresis loop was performed by TF-2000 and the photovoltaic effect were measured by 405 nm laser.
BFO was (100) highly preferred along Si (100) substrate from X-ray diffraction measurement. BFO film strain relax as film thickness increase, hence the diffraction peak position shift more close to the expected bulk value. The surface roughness, which was carried out by AFM and X-ray reflectivity has little increase as film thickness thicker. The hysteresis loop showed that the polarization slow down as the film thickness increased. The photovoltaic effect also slow down as the film thicker.
The BFO built-in electric field affect the efficiency of photovoltaic effect. As the film thickness increased to 100 nm, the strain relax caused built-in electric field become weaker and the probability of electron and hole recombined increase due to distance between two electrode; therefore, the efficiency of photovoltaic hidden.
[1] R. Bez, A. Pirovano, "Non-volatile memory technologies: emerging concepts and new materials"Materials Science in Semiconductor Processing 7/4-6 (2004) 349-355.
[2] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, "Ferroelectric thin films: Review of materials, properties, and applications"Journal of Applied Physics 100/5 (2006) 051606.
[3] I.L.P. R.C. Sousa," Non-volatile magnetic random access memories (MRAM)"Comptes Rendus Physique 6/9 (2005)1013–1021.
[4] S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh," Photovoltaic effects in BiFeO3" Applied Physics Letters 95/6 (2009) 062909.
[5] Alessio Filippetti,Nicola A. Hill," First principles study of structural,electronic and magnetic interplay in ferroelectromagnetic yttrium manganite"Journal of Magnetism and Magnetic Materials 236 (2001) 176–189
[6] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh." Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures" Science 299/5613 (2003) 1719.
[7] F.De Martini, V.Buzek, F.Sciarrino,C.Sias." Experimental realization of the quantum universal NOT gate" Nature 419/6909 (2002) 815.
[8] N.L.V. CARRE, J.H.G. RANGEL, C.D. PINHEIRO, " Effect of the structures on the opti-cal properties of (PbLa)TiO3 thin films" Bulgarian Journal of Physics 30 (2003) 131–140.
[9] G. A. Smolenskii and I. E. Chupis."Ferroelectromagnets" Soviet Physics Uspekhi 25 (1982).
[10] S.G. R. Mazumder, P. Mondal, Dipten Bhattacharya,* S. Dasgupta, N. Das, and A. Sen." Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3"Journal of Applied Physics. 100, (2006) 033908
[11] M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana." Ferroelectricity in a pure BiFeO3 ceramic" Applied Physics Letters 76/19 (2000) 2764.
[12] B. Ramachandran, M.S.R. Rao." Low temperature magnetocaloric effect in polycrystalline BiFeO3 ceramics" Applied Physics Letters 95/14 (2009) 142505.
[13] C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh." Electric modulation of conduction in multiferroic Ca-doped BiFeO3 film" Nature material 8/6 (2009) 485.
[14] C.-M. Hung, C.-S. Tu, Z.-R. Xu2, V.H. Schmidt, R.R. Chien"Photo-Induced Electric Responses in Heterostructure of Indium Tin Oxide/(Bi1−xCax)FeO3−δ/Au "IEEE transactions on magnetics, vol. 50, no. 11 (2014).
[15] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel." Bulk properties and electronic structure of SrTiO3, BaTiO3,PbTiO3 perovskites: an ab initio HF/DFT study" Computational Materials Science 29/2 (2004) 165-178.
[16] S.K. Pandey, A.R. James, C. Prakash, T.C. Goel, K. Zimik." Electrical properties of PZT thin films grown by sol–gel and PLD using a seed layer" Materials Science and Engineering: B 112/1 (2004) 96-100.
[17] Y. Guo, B. Guo, W. Dong, H. Li, H. Liu." Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin film" Nanotechnology 24/27 (2013) 275201.
[18] Z. Peng, Y. Wang, B. Liu." Evidence of interface dominated photovoltaic effect of Pt-sandwiched polycrystalline BiFeO3 thin film capacitors" Materials Science in Semiconductor Processing 35 (2015) 115-119.
[19] O. Trithaveesak, J. Schubert, C. Buchal." Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates" Journal of Applied Physics 98/11 (2005) 114101.
[20] J. Zhu, J. Wu, D. Xiao, J. Zhu, J. Tan, Q. Zhang, L. Chen." Growth and characterization of (Pb, La)TiO3 films with and without a special buffer layer prepared by RF magnetron sputtering" Materials Letters 61/4-5 (2007) 937.
[21] K. Yoshida, W. Sakamoto, M. Moriya, T. Yogo." Photoinduced electrical properties of Mn-doped BiFeO3 thin films prepared by chemical solution deposition" Japanese Journal of Applied Physics 53/9S (2014) 09PA17.
[22] Patcharin Poosanaas, Kazuhiko Tonooka, K. Uchino."Photostrictive actuators" Mechatronics 10 (2000) 467±487.
[23] F. Wu, L. Song, Y. Guo, S. Jin, E. Bi, H. Chen, H. Duan, H. Li, H. Liu, H. Kang." Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer" Applied Physics A 117/3 (2014) 1301.
[24] S. Hussain, S.K. Hasanain, G. Hassnain Jaffari, S. Ismat Shah." Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin film" Current Applied Physics 15/3 (2015) 194.
[25] S.-J. Chiu, Y.-T. Liu, H.-Y. Lee, G.-P. Yu, J.-H. Huang." Growth of BiFeO3/SrTiO3 artificial superlattice structure by RF sputtering" Journal of Crystal Growth 334/1 (2011) 90.
[26] Y.-T. Liu, S.-J. Chiu, H.-Y. Lee, S.-Y. Chen." Preparation of a BiFeO3/LaNiO3 multiferroic oxide superlattice structure by RF magnetron sputtering" Surface and Coatings Technology 206/7 (2011) 1666-1672.
[27] D. Cao, H. Zhang, L. Fang, W. Dong, F. Zheng, M. Shen." Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric (Pb„Zr,Ti)O3 film" Applied Physics Letters 97/10 (2010) 102104.
[28] 曲遠方"功能陶瓷材料"化學工業出版社材料科學與工程出版中心, (2003).
[29] C. Kittel, Introduction to Solid State Physics.
[30] M. Barsoum, M. Barsoum. "Fundamentals of ceramics" CRC Press, (2002).
[31] Y.S.L. Yang, S. J.; Kim, S. H.; Chae, B. G.; Jang, M. S."Schottky barrier effects in the electric conduction of sol-gel derived lead zirconate titanate thin film capacitors" Journal of Applied Physics (1998), 84 (9),
5005-5011.
[32] I.T. Stolichnov, A."Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films" Journal of Applied Physics (1998),84 (6), 3216-3225.
[33] W.L. Warren, D. Dimos, R.M. Waser." Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites " MRS Bulletin 21/07 (1996),40.
[34] W. Jie, C. Yan-Jun, X. Zhuo." Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles " Acta Physics Sin (2012) Vol. 61, No. 5 057502.
[35] B.D. Cullity, <ElementsXRay> (1978).
[36] N.N. Krainik. " Introduction to Ceramics, 2nd Edition " Soviet Physics (1966).
[37] 王春雷、李吉超、趙明磊, 壓電鐵電物理 (2009).
[38] W.R.C. B. Jaffe, Jr. and H. Jaffe." Piezoelectric ceramics"Academic Press, India (1971).
[39] S. Nakashima, T. Uchida, D. Nakayama, H. Fujisawa, M. Kobune, M. Shimizu." Bulk photovoltaic effect in a BiFeO3 thin film on a SrTiO3 substrate" Japanese Journal of Applied Physics 53/9S (2014) 09PA16.
[40] M. Alexe, D. Hesse." Tip-enhanced photovoltaic effects in bismuth ferrite" Nature Communications 2 (2011) 256.
[41] M.V.C.a.D.O.K. B. Kundys." Light-induced size changes in BiFeO3 crystals" Nature Materials 9, (2010) 803–805
[42] K. Uchino, P. Poosanaas, K. Tonooka." Photostrictive actuators -new perspective" Ferroelectrics 258/1 (2001) 147-158.
[43] B. Kundys, M. Viret, D. Colson, D.O. Kundys" Light-induced size changes in BiFeO3 crystals" Nature Materials 9, (2010) 803–805
[44] B. Chen, M. Li, Y. Liu, Z. Zuo, F. Zhuge, Q.F. Zhan, R.W. Li." Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors" Nanotechnology 22/19 (2011) 195201.
[45] C-S.Tu Cheng-Ming Hung, Zhe-Rui Xu, V. Hugo Schmidt, and R. R. Chien." Photo-Induced Electric Responses in Heterostructure of Indium Tin Oxide/(Bi1−xCax)FeO3−δ/Au" IEEE Transactions on magnetics, vol. 50, no. 11, november (2014).
[46] W.D. Kingery." Introduction to ceramics" (1960).
[47] J. Xu, Z. Jia, N. Zhang, T. Ren." Influence of La and Mn dopants on the current-voltage characteristics of BiFeO3/ZnO heterojunction" Journal of Applied Physics 111/7 (2012) 074101.
[48] C.S. Tu, C.M. Hung, V.H. Schmidt, R.R. Chien, M.D. Jiang, J. Anthoninappen." The origin of photovoltaic responses in BiFeO3 multiferroic ceramics" Journal of physics. Condensed matter : an Institute of Physics journal 24/49 (2012) 495902.
[49] C.M. Hung, C.S. Tu, W.D. Yen, L.S. Jou, M.D. Jiang, V.H. Schmidt." Photovoltaic phenomena in BiFeO3 multiferroic ceramics" Journal of Applied Physics 111/7 (2012) 07D912.
[50] 葉玉堂." 儀器總覽(化學分析儀器)" 行政院國家科學委員會精密儀器 (1998).
[51] S.Y. Yang, SeidelJ, S.J. Byrnes, ShaferP, C.H. Yang, M.D. Rossell, YuP, Y.H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, RameshR." Above-bandgap voltages from ferroelectric photovoltaic devices" Nature nanotechnology 5/2 (2010) 143.
[52] J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.Y. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.H. Yang, J.C. Yang, Y.H. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, R. Ramesh." DomainWall Conductivity in La-Doped BiFeO3" Physical Review Letters(2010) 105/19.
[53] J. Zhang, M. Rutkowski, L.W. Martin, T. Conry, R. Ramesh, J.F. Ihlefeld, A. Melville, D.G. Schlom, L.J. Brillson." Surface, bulk, and interface electronic states of epitaxial BiFeO3 films" Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27/4 (2009) 2012.
[54] S.-J. Chiu, Y.-T. Liu, H.-Y. Lee, G.-P. Yu, J.-H. Huang."Strain enhanced ferroelectric properties of multiferroic BiFeO3/SrTiO3 superlattice structure prepared by radio frequency magnetron sputtering" Thin Solid Films 539 (2013) 75-80.