研究生: |
劉靜萍 Ching-Ping Liu |
---|---|
論文名稱: |
小分子和離子的光譜研究: CH3S, SO, CH2CO+ 和CD2CO+ Spectral studies of small molecules and ions: CH3S, SO, CH2CO+ and CD2CO+ |
指導教授: |
李遠鵬
Yuan-Pern Lee 儲三陽 San-Yan Chu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 204 |
中文關鍵詞: | 光譜 、離子 、四波混頻光譜法 、零動能光電子光譜法 、質量解析臨界游離光譜法 、自由基 |
外文關鍵詞: | spectral studies, CH3S, SO, CH2CO+, CD2CO+, four-wave mixing, ZEKE, MATI |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用波長為248 nm的氪化氟準分子雷射光解在分子射束中的二甲基二硫(CH3SSCH3),產生甲硫基(CH3S),然後以簡併四波混頻(degenerate four-wave mixing, DFWM)光譜法研究甲硫基的 電子態躍遷。甲硫基的簡併四波混頻光譜範圍從 317-377 nm,除了對已知的3v和213v這兩個與C-S伸張振動模(□3)和CH3張開振動模(□2)有關的兩個序列往更高能量的區域做延伸,還發現了包含CH3對稱伸張振動模(□1)的序列。然而因為譜線的勻相增寬造成轉動譜帶的結構相重疊,所以簡併四波混頻光譜法對甲硫基高度預解離能態的生命期無法得到詳細的資訊。
針對簡併四波混頻光譜法的限制,我們更進一步利用雙色四波混頻光譜法(two-color resonant four-wave mixing, TC-RFWM)來研究甲硫基的 電子態的這些預解離能階。因為利用此雙色共振的方法可以選擇性地激發所標定的特定振轉能階,而偵測其對應的相關譜線,使得光譜不受其他譜線干擾,所以能夠準確地量測譜線的位置和勻相譜線的線寬。我們因而可以確認新序列的振動指派為:113v和11213v兩個序列,並且可以對這些序列的生命期做定量的測量,觀測到生命期的振動模選擇性,確認C-S伸張模與預解離息息相關。
我們也對一氧化硫(SO)的B 3□-電子態的預解離能階進行觀測。一氧化硫是由在分子射束中的二氧化硫(SO2)以波長為193 nm的氬化氟準分子雷射光解所產生,然後利用簡併四波混頻光譜法來研究一氧化硫的B 3□- □ X 3□-電子態躍遷。一氧化硫的簡併四波混頻光譜範圍從 220-263 nm,但由於預解離譜線重疊及微擾的關係,所觀測到的振轉譜帶僅少數可完全被解析。由(8,2)、(8,1)和(8,0)三個振動譜帶的轉動分析,可得到在B 3□-電子態(v□ = 8)精確的光譜參數值,明顯地改善了文獻值,其中光譜參數:離心力扭曲(D□)常數,自旋-自旋耦合(□□和□D)以及自旋-轉動耦合(□□)常數都是首次之測量。
我們還利用非共振雙光子質量解析臨界游離(mass-analyzed threshold ionization, MATI)以及零動能光電子譜(zero kinetic energy photoelectron spectroscopy, ZEKE)來研究CH2CO+和CD2CO+的光譜。我們觀測到六-七個CH2CO+和CD2CO+在 電子基態的振動模之基頻波數,其中□5, □6, □8和□9這幾個非對稱的振動模是首次被觀測到。由零動能電子光譜的轉動分析我們求得CH2CO和CD2CO的游離能,以及在其離子基態的轉動常數。
Following photodissociation of dimethyl disulfide (CH3SSCH3) in a supersonic jet with a KrF excimer laser at 248 nm, degenerate four-wave mixing (DFWM) spectra of the à 2A1 □ X 2E3/2 transition of CH3S (methylthio or thiomethoxy) in a spectral region 317□377 nm were recorded using a dye laser. In addition to extension to higher members of the known progressions 3v and 213v associated with C□S stretching (□3) and CH3 umbrella (□2) modes, new progressions involving the symmetric CH3 stretching (□1) mode of the à 2A1 state of CH3S were tentatively assigned. However, in this work of DFWM, detailed information on lifetimes of these predissociative states were difficult to obtain because of homogeneous broadening of rovibronic lines leading to overlapped band structures.
We further applied two-color resonant four-wave mixing (TC-RFWM) with the hole-buring scheme to investigate these highly predissociative levels of CH3S. Because the spectral simplification afforded by the two-color method allows accurate determination of line positions and homogeneous line widths, we confirmed vibrational assignments of new progressions 113v and 11213v involving symmetric CH3 stretching mode (□1) and measured quantitatively their lifetimes.
We also demonstrated predissociative levels of the B 3□- state of SO. Following photodissociation of SO2 in a supersonic jet with an ArF excimer at 193 nm, DFWM spectra of the B 3□-□ X 3□- transition of SO in a spectral region 220-263 nm were recorded using a frequency-doubled dye laser. The rotational analysis of (8,2), (8,1), and (8,0) bands yields spectral parameters of the B 3□- (v□ = 8) state that are significantly improved over those reported previously; parameters for centrifugal distortion (D□), spin-spin coupling (□□, and □D), and spin-rotation coupling (□□) were derived for the first time.
We have also studied the spectra of CH2CO+ and CD2CO+ cations using nonresonant two-photon mass analyzed threshold ionization (MATI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. Fundamental wave numbers of several normal vibrational modes (six for CH2CO+ and seven for CD2CO+) of the 2B1 electronic ground state were determined; the □5, □6, □8, and □9 nontotally symmetric vibrational modes were observed for the first time. Rotational analysis of the ZEKE spectra has yielded the ionization potentials of the CH2CO and CD2CO isotopomers and the rotational constants for the ground state of the cations.
Chapter 1 references
P. H. Vaccaro, in Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, edited by H. L. Dia and R. W. Field (World Scientific, Singapore, 1995), Vol. 4, p.1.
D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 1770 (1992).
R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
P. Ewart and S. V. O’Leary, Opt. Lett. 11, 279 (1986).
T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990), Appl. Phys. B 50, 479 (1990).
S. Williams, R. N. Zare, and L. A. Rahn, J. Chem. Phys. 101, 1093 (1994).
S. Williams, D. S. Green, S. Sethuramam, and R. N. Zare, J. Am. Chem. Soc. 114, 9122 (1992).
S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, Opt. Lett. 19, 1 (1994).
T. G. Owano, C. H. Kruger, D. S. Green, S. Williams, and R. N. Zare, Diamond Relat. Mater. 2, 661 (1993).
D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. Hruger, Science 259, 1726 (1993).
T. G. Owano, E. H. Wahl, C. H. Kruger, D. S. Green, and R. N. Zare, Proceedings of the 11th international Symposium on Plasma Chemistry, 1993 (unpublished), p.416.
A. Kumar, C.-C. Hsiao, and Y.-P. Lee, Chem.Phys. Lett. 297, 300 (1998).
T. J. Butenhoff, E. A. Rohlfing, J. Chem. Phys. 97, 1595 (1992).
S. Williams, J. D. Tobiason, J. Dunlop, and E. A. Rohlfing, J. Chem. Phys. 102, 8342 (1995).
W.-C. Hung, M.-L. Huang, Y.-C. Lee, and Y.-P. Lee, J. Chem. Phys. 103, 9941 (1995).
J. R. Dunlop and E. A. Rohlfing, J. Chem. Phys. 100, 856 (1994).
T. J. Butenhoff and E. A. Rohlfing, J. Chem. Phys. 98, 5460, (1993).
H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, 1986).
E. F. McCormack, S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, Chem. Phys. Lett. 211, 147 (1993), 227, 656 (1994).
M. A. Buntine, D. W. Chandler, and C. C. Hayden, J. Chem. Phys. 102, 2718 (1995).
M. D. Wheeler, I. R. Lambert, and M. N. R. Ashfold, Chem. Phys. Lett. 229, 285 (1994).
T. Ebata, A. Okazaki, Y. Inokuchi, and N. Mikami, J. Mol. Struct. 352/353, 533 (1995).
G. Hall and B. J. Whitaker, J. Chem. Soc. Faraday Trans. 90, 1 (1994).
S. Williams, R. N. Zare, and L. A. Rhan, J. Chem. Phys. 101, 1072 (1994).
S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, J. Chem. Phys. 106, 3090 (1997).
J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 2277(1992).
L. J. Rothberg and N. Bloembergen, Phys. Rev. A 30, 820 (1984); 30, 2327 (1984).
(a) T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Phys. Chem. 91, 1704 (1987); (b) J. Chem. Phys. 86, 5370 (1987).
(a) K. A. Nelson, D. R. Lutz, and M. D. Fayer, Phys. Rev. B 24, 3261 (1981); (b) R. J. D. Miller, R. Casalengo, K. A. Nelson, and M. D. Fayer, Chem. Phys. 72, 731 (1982); (c) T. S. Rose and M. D. Fayer, Chem. Phys. Lett. 117, 12 (1985); (d) J. T. Fourkas, T. R. Brewer, H. Kim, and M. D. Fayer, Opt. Lett. 16, 177 (1991); (e) J. Chem. Phys. 95, 5775 (1991).
P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990).
F. Di Teodoro and E. F. McCormack, J. Chem. Phys. 110, 8369 (1999).
R. N. Zare, Angular Momentum (Wiley, New York, 1988).
R. C. Hiborn, Am. J. Phys. 50, 982 (1982).
J. T. Fourkas, R. Trebino, and M. D. Fayer, J. Chem. Phys. 97, 69 (1992); 97, 78 (1992).
T. Müller and P. H. Vaccaro, Chem. Phys. Lett. 266, 575 (1997).
P. H. Vaccaro, in Nonlinear Spectroscopy for Molecular Struture Determination, edited by E. Hirota, R. W. Field, J. P. Maier, and S. Tsuchiya (Blackwell Scientific, London 1997), and references therein.
P. Ye and Y. R. Shen, Phys. Rev. A 25, 2183 (1982).
A. von Jena and H. E. Lessing, Opt. Quantum Electron. 11, 419 (1979).
S. A. J. Druet and J. P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
Y. Prior, IEEE J. Quamtum Electron. QE-20, 37 (1984).
B. Attal-Trétout and K. Müller-Dethlefs, Mol. Phys. 73 1257 (1991); B. Attal-Trétout and K. Müller-Dethlefs, Ber. Bunsenges. Phys. Chem. 89, 318 (1985).
Chapter 2 references
E. W. Schlag, ZEKE Spectroscopy (Cambridge University Press, Cambridge, 1998).
K. Müller-Dethlefs and E. W. Schlag, Ann. Rev. Phys. Chem. 42, 109 (1991).
K. Müller-Dethlefs and O. Dopfer, Chem. Rev. 94, 1845 (1994).
K. Müller-Dethlefs, E. W. Schlag, E. R. Grant, K. Wang, and B. V. Mckoy, Adv. Phys. Chem. 90, 1-104 (1995).
C. E. H. Dessent and K. Müller-Dethlefs, Chem. Rev. 100, 3999 (2000).
J. E. Braun, Th. Mehnert, and H. J. Neusser, 203, 1 (2000).
K. Müller-Dethlefs, M. Sander, and E. W. Schlag, Chem. Phys. Lett. 112, 291 (1984).
A. Held and E. W. Schlag, Accts. Chem. Res. 31, 467 (1998).
M. I. Al-Joboury and D. w. Turner, J. Chem. Soc. 5, 5141 (1963).
A. Terenin and F. Vilessor, Adv. Photochem. 2, 385 (1964).
K. Siegbahn, Rev. Mod. Phys. 54, 709 (1982).
N. Martensson, P. Baltzer, P. A. Bruhwiler, J. O. Forsell, A. Nilsson, A. Stenborg, B. J. Wannberg, Electron. Spectrosc. Relat. Phenom. 70, 117 (1994).
W. B. Peatman, T. B. Borne, and E. W. Schlag, Chem. Phys. Lett. 3, 492 (1969).
R. Linder, H.-J. Dietrich, K. Müller-Dethlefs, Chem. Phys. Lett. 228, 417 (1994).
A. B. F. Duncan, Rydberg Series in Atoms and Molecules, New York, Acadwmic, 1971.
M. B. Robin, High Excited States of Polyatomic Molecules, Vols. 1, 2, 3. New York, Academic, 1974.
F Merkt, R N Zare, J. Chem. Phys. 101, 3495 (1994).
R. Signorell and F. Merkt, in The Role of Rydberg States in Spectroscopy and Photochemistry, editor C. Sandorfy, Kluwer Academic Publishers, 1999, 479.
J. Stark, Ann. Phys. 48, 193 (1914).
R. F. Stebbings and F. B. Dunning, Rydberg states of Atomic and Molecules, Cambridge University Press, London, 1983.
F. Merk, A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and R. Gunzinger, J. Phys. B: At. Mol. Opt. Phys. 31, 1705 (1998).
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Speringer-Verlag, Berlin, 1957.
D. R. Herrick, J. Chem. Phys. 65, 3529 (1976).
F. Merk, Annu. Rev. Phys. Chem. 48,675 (1997).
C. Bordas and H. Helm, Phys. Rev. A 47, 1209 (1993).
T. F. Gallagher, Rydberg atoms, Cambridge University Press, London, 1994.
G. Reiser, W. Habenicht, K. Müller-Dethlefs, E. W. Schlag, Chem. Phys. Lett. 152, 119 (1998).
W. A. Chupka, J. Chem. Phys. 98, 4520 (1993).
F. Merkt, J. Chem. Phys. 100, 2623 (1994).
M. J. J. Vrakking and Y. T. Lee, J. Chem. Phys. 102, 8818 (1995).
S. T. Pratt, J. Chem. Phys. 98, 9241 (1993).
F. Merkt, S. R. Mackenzie, and T. P. Softley, J. Chem. Phys. 103, 4509 (1995).
M. J. J. Vrakking, I. Fischer, D. M. Villeneuve, and A. Stolow, J. Chem. Phys. 103, 4538 (1995).
T. P. Softley and R. J. Rednall, J. Chem. Phys. 112, 7992 (2000).
K. Müller-Dethlefs and E. W. Schlag, Angew. Chem. Int. Ed. 37, 1346 (1998).
F. Merkt, R. J. Rednall, S. R. Mackenzie, and T. P. Softley, Phys. Rev. Lett. 76, 3526 (1996).
L. Zhu and P. Johnson, J. Chem. Phys. 94, 5769 (1991).
H. Krause and H. J. Neusser, J. Chem. Phys. 97, 5923 (1992).
K. F. Willey, C. S. Yeh, and M. A. Duncan, Chem. Phys. Lett. 211, 156 (1993).
F. Merkt, S. R. Mackenzie, and T. P. Softley, J. Chem. Phys. 99, 4213 (1993).
H.-J. Dietrich, K. R. Lindner, and Müller-Dethlefs, J. Chem. Phys. 101, 3399 (1994).
Chapter 3 references
A. R. Ravishankara, Y. Rudich, R. Talukdar, and S. B. Barone, Philos. Trans. Roy. Soc. London, B352 (1350), 171 (1997).
G. S. Tyndall and A. R. Ravishankara, Int. J. Chem. Kinet. 23, 483 (1991)
R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, Nature (London) 326, 655 (1987).
T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, and R. E. Stoiber, J. Atmos. Chem. 14, 315 (1992).
J.M.C. Plane, in: E.S. Saltzman, W.J. Cooper (Eds), Biogenic Sulfur and in the Environment, American Chemical Society. Washington, DC, 1989.
D. E. Powers, M. B. Pushkarsky, and T. A. Miller, J. Chem. Phys. 106, 6878 (1997).
B. E. Applegate, M. B. Pushkarksky, and T. A. Miller, J. Phys. Chem. A 103, 1538 (1999).
G. D. Bent, J. Chem. Phys. 92, 1547 (1990).
G. D. Bent, J. Chem. Phys. 89, 7298 (1988).
R. Fournier and A. E. Depristo, J. Chem. Phys. 96, 1183 (1992).
C.-W. Hsu, C.-L. Liao, Z.-X. Ma, P. J. H. Tjossem, and C. Y. Ng. J. Chem. Phys. 97, 6283 (1992).
A. C. Curtiss, R. H. Nobes, J. A. Pople, and L. Radom, J. Chem. Phys. 97, 6766 (1992).
Q. Cui and K. Morokuma, Chem. Phys. Lett. 263, 54 (1996).
R. D. El Bouzaidi, A. El Hammadi, A. Boutalib, and M. El Mouhtadi, J. Mol. Struct. (Theochem) 497, 197 (2000).
A. B. Callear, J. Connor, and D. R. Dickson, Nature 221, 1238 (1969).
A. B. Callear and D. R. Dickson, Trans. Faraday Soc. 66, 1987 (1970).
K. Ohbayashi, H. Akimoto, and I. Tanaka, Chem. Phys. Lett. 52, 47 (1977).
P. C. Engelking, G. B. Ellison, and W. C. Lineberger, J. Chem. Phys. 69, 1826 (1978).
B. K. Janousek and J. I. Brauman, J. Chem. Phys. 72, 694 (1980).
S. Moran and G. B. Ellison, J. Phys. Chem. 92, 1794 (1988).
Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 85, 1770 (1986).
M. Suzuki, G. Inoue, and H. Akimoto, J. Chem. Phys. 81, 5405 (1984).
G. Black and L. E. Jusinski, J. Chem. Soc. Faraday Trans. 2, 82, 2143 (1986).
G. Black and L. E. Jusinski, J. Chem. Phys. 85, 5379 (1986).
Y.-C. Hsu, X. Liu, and T. A. Miller, J. Chem. Phys. 90, 6852 (1989).
S. Y. Chiang and Y.-P. Lee, J. Chem. Phys. 95, 66 (1991).
R. T. Bise, H. Choi, H. B. Pedersen, D. H. Mordaunt, and D. M. Neumark, J. Chem. Phys. 110, 805 (1999).
M. B. Pushkarsky, B. E. Applegate, and T. A. Miller, J. Chem. Phys. 113, 9649 (2000).
Y.-Y. Lee, S.-Y. Chiang, and Y.-P. Lee, J. Chem. Phys. 93, 4487 (1990).
R. L. Farrow, D. J. Rakestraw and T. Dreier, J. Opt. Soc. Am. B 9, 1770 (1992).
T. Dreier and D. J. Rakestraw, Appl. Phys. B 50 479 (1990).
Y. Matsui, A. Yuuki, M. Sahara, and Y. Hirose, Jpn. J. Appl. Phys. 28, 1718 (1989).
S. Williams, D. S. Green, S. Sethuraman, and R. N. Zare, J. Am. Chem. Soc. 114, 9122 (1992).
S. Williams, R. N. Zare, and L. A. Rahn, J. Chem. Phys. 101, 1093 (1994).
A. Kumar, W.-C. Hung, C.-C. Hsiao, and Y.-P. Lee, Chem. Phys. Lett. 269, 22 (1997).
S. Williams, J. D. Tobiason, J. R. Dunlop, and E. A. Rohlfing, J. Chem. Phys. 102, 8342 (1995).
W.-C. Hung, M.-L. Huang, Y.-C. Lee, and Y.-P. Lee, J. Chem. Phys. 103, 9941(1995).
A. Kumar, C.-C. Hsiao, W.-C. Hung, and Y.-P. Lee, J. Chem. Phys. 109, 3824 (1998).
X. Li, A. Kumar, C.-C. Hsiao, and Y.-P. Lee, J. Phys. Chem. A 103, 6162 (1999).
X. Li and Y.-P. Lee, J. Chem. Phys. 111, 4942 (1999).
Y. Tang, J. P. Schmidt, and S. A. Reid, J. Chem. Phys. 110, 5734 (1999).
A. Kumar, C.-C Hsiao, Y.-Y. Lee, and Y.-P. Lee, Chem. Phys. Lett. 297, 300 (1998).
C.-P. Liu, Y. Matsuda, and Y.-P. Lee, J. Chem.. Phys. 119, 12335 (2003).
S. Williams, J. D. Tobiason, J.R. Dunlop, E.A. Rohlfing, J. Chem. Phys. 103, 9941 (1995).
S. C. Foster, P. Misra, T.-Y. D. Lin, C. P. Damo, C. C. Carter, and T. A. Miller, J. Phys. Chem. 92, 5914 (1988).
SpecView: Simulation and Fitting of Rotational Structure of Electronic and Vibronic Bands. V. Stakhursky, T.A. Miller, 56th Molecular Spectroscopy Symposium. http://molspect.mps.ohio-state.edu/goes/specview.html
D. E. Powers, M. B. Pushkarsky, M.-C. Yang, and T. A. Miller, J. Chem. Phys. A 101, 9846 (1997).
S.-W. Chiu, W.-K. Li, W.-B. Tzeng, and C.-Y. Ng, J. Chem. Phys. 97, 6557 (1992).
S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, J. Chem. Phys. 106, 3090 (1997).
S. Williams, R. N. Zare, and L. A. Rahn, J. Chem. Phys. 101, 1072 (1994).
Chpater 4 references
G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere, Reidel: Dordrecht, 1986
Yuk L. Yung and W. B. Demore, Icarus 51, 199 (1982).
A. Dalgarno, In “Rate Coefficients in Astrochemistry”; (T. J. Miller, D. A. Williams, Eds), pp. 321-338, Kluwer, Dordrecht, 1988.
D. A. Neufeld and A. Dalgarno, Astrophys. J. 340, 869 (1989).
R. P. Wayne, Chemistry of the Atmospheres (Oxford Science Publications/Clarendon Press), 1991.
W. W. Duley and D. W. Williams, Interstellar Chemistry (New York: Academic Press), 1984.
B. E. Turner, Astrophys. J. 455, 556 (1995).
J. I. Moses, M. Allen, and G. R. Gladstone, Geophys. Res. Lett. 22, 1601 (1995).
E. Lellouch, D. F. Strobel, M. J. S. Belton, M. E. Summers, G. Paubert, and R. Moreno, Astrophys. J. 459, L107 (1996).
F. Wu, X. Chen, and B. R. Weiner, J. Phys. Chem. 99, 17380 (1995).
X. Chen, F. Asmar, H. Wang, and B. R. Weiner, J. Phys. Chem. 95, 6415 (1991).
S. Becker, C. Braatz, J. Lindner, and E. Tiemann, Chem. Phys. 196, 275 (1995).
G. M. Thorson, C. M. Cheatum, M. J. Coffey, and F. F. Crim, J. Chem. Phys. 22, 10843 (1999).
K. Luther and J. Troe, 17th International Symposium on Combustion; Combustion, Institute: Pittsburgh, PA, p 535, 1979.
M. A. A. Clyne and I. S. McDermid, J. Chem. Soc. Faraday Trans. 2, 75, 905 (1979).
D.-Z. Cao and D. W. Setser, J. Phys. Chem. 92, 1169 (1988).
G. Lo, R. Beaman, and D. W. Setser, Chem. Phys. Lett. 149, 384 (1988).
B. C. Stuart, S. M. Cameron, and H. T. Powell, Chem. Phys. Lett. 191, 273 (1992).
H. C. Miller, K. Yamasaki, J. E. Smedley, and S. R. Leone, Chem. Phys. Lett. 181, 250 (1991).
E. V. Martin, Phys. Rev. 41, 167 (1932).
C. Clerbaux and R. Colin, J. Mol. Spectrosc. 165, 334 (1994).
R. Colin, Can. J. Phys. 47, 979 (1969).
W. C. Swope, Y.-P. Lee, and H. F. Schaefer, J. Chem. Phys. 71, 3761 (1979).
F. R. Ornellas and A. C. Borin, Mol. Phys. 94, 139 (1998).
A. C. Borin and F. R. Ornellas, Chem. Phys. 247, 351 (1999).
D. Abadie and L. Herman, J. Quant. Spectrosc. Radiant. Transfer 4, 195 (1963).
R. S. Speth, C. Braatz, and E. Tiemann, J. Mol. Spectrosc. 192, 69 (1998).
C. Braatz and E. Tiemann, Chem. Phys. 229, 93 (1998).
C. P. Archer, J. M. F. Elks, and C. M. Western, J. Chem. Phys. 112, 6293 (2000).
W.-C. Hung, M.-L. Huang, Y.-C. Lee, and Y.-P. Lee, J. Chem. Phys. 103, 9941 (1995).
A. Kumar, C.-C. Hsiao, Y.-Y. Lee, and Y.-P. Lee, Chem. Phys. Lett. 297, 300 (1998).
Herzberg, G. Molecular Spectra and Molecular Structure, Vol. I Spectra of Diatomic Molecules (D. Van Nostrand: New York, 1950)
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book Company, Inc., New York, 1955), pp. 182-185.
R. Schlapp, Physic. Rev. 51, 342 (1937).
J. B. Tatum, J. Phys. 44, 2944 (1966).
I. Kovács, Rotational Structure in the Spectra of Diatomic Molecules, American Elsevier: New York, 1969.
D. Boudjaadar, J. Brion, P. Chollet, G. Guelachvili, and M. Vervolet, J. Mol. Spectrosc. 119, 352 (1986).
G. R. Héber and R. V. Hodder, J. Phys. B 7, 2244 (1974).
T. Ebata, O. Nakazawa, and M. ITO, Chem. Phys. Lett. 143, 31 (1988).
K. Yamanouchi, M. Okunishi, Y. Endo, and S. Tsuchiya, J. Mol. Struct. 352/353, 541 (1995).
R. Vasudev and W. M. McClain, J. Mol. Spectrosc. 89, 125 (1981).
S. Williams, R. N. Zare, and L. A. Rhan, J. Chem. Phys. 101, 1072 (1994).
H. Kanamori, J. E. Butler, K. Kawaguchi, C. Yamada, and E. Hirota, J. Chem. Phys. 83, 611 (1985).
W. F. Kolbe and B. Leskovar, J. Chem. Phys. 85, 7117 (1986).
M. Kawasaki and H. Sato, Chem. Phys. Lett. 139, 585 (1987).
P. Felder, C. S. Effenhauser, B.-M. Haas, and J. R. Huber, Chem. Phys. Lett. 148, 417 (1988).
P. Felder, B.-M. Haas, and J. R. Huber, Chem. Phys. Lett. 204, 248 (1993).
K. Yamasaki, F. Taketani, K. Sugiura, and I. Tokue, J. Phys. Chem. A 108, 2382 (2004).
T. Ebata, O. Nakazawa, and M. ITO, Chem. Phys. Lett. 143, 31 (1988).
A. Okazaki, T. Ebata, and N. Mikami, J. Chem. Phys. 107, 8752 (1997).
I. W. Smith, J. Quan. Spectros. Radiat. Trans. 8, 1437 (1968).
W. H. Smith and H. S. Liszt, J. Quan. Spectros. Radiat. Trans. 11, 45 (1971).
RKR1 is R. J. LeRoy’s program for applying the first-order Rydberg-Klein-Rees procedure to spectroscopic constants for a diatomic molecule to determine its potential energy function. This program allows the vibrational energies and inertial rotational constants to be defined by pure Dunham expansions, by pure near-dissociation expansions (NDEs), or by mixed Dunham/NDE functions.
B. C. Stuart, S. M. Cameron, and H. T. Powell, J. Phys. Chem. 98, 11499 (1994).
WSpectra: a Windows program to accurately measure the line intensities of high resolution Fourier transform spectra.
M. Carleer, Remote Sensing of Clouds and the Atmosphere V, Proc. SPIE, 4168, 337 (2001).
Chapter 5 references
R. G. W. Norrish, H. G. Crone, and O. Saltmarsh, J. Chem. Soc. 1533 (1933).
R. N. Dixon, and G. H. Kirby, Trans. Faraday Soc. 62, 1406 (1966).
M. Grossman, G. P. Semeluk, and I. Unger, Can. J. Chem. 47, 3079 (1969).
A. H. Laufer and R. A. Keller, J. Am. Chem. Soc. 93, 61 (1971).
W. C. Price, J. P. Teegan, and A. D. Walsh, J. Chem. Soc. 920 (1951).
M. N. R. Ashfold, A. D. Couch, R. N. Dixon, and B. Tutcher, J. Phys. Chem. 92, 5327 (1988).
W. D. Allen and H. F. Schaefer III, J. Chem. Phys. 84, 2212 (1986); 87, 7076 (1987).
P. G. Szalay, A. G. Császár, and L. Nemes, J. Chem. Phys. 105, 1034 (1996).
J. W. C. Johns, J. M. R. Stone, and G. Winnewisser, J. Mol. Spectrosc. 42, 523 (1972).
R. D. Brown, P. D. Godfrey, D. McNaughton, A. P. Pierlot, and W. H. Taylor, J. Mol. Spectrosc. 140, 340 (1990).
J. W. C. Johns et al., J. Mol. Spectrosc. 156, 501 (1992).
C. B. Moore and G. C. Pimentel, J. Chem. Phys. 38, 2816 (1963).
L. Nemes, J. Mol. Spectrosc. 72, 102 (1978).
F. Winther, F. Hegelund, and L. Nemes, J. Mol. Spectrosc. 117, 388 (1986).
J. L. Duncan and A. M. Ferguson, Spectrochim. Acta 43A, 1081 (1987).
J. L. Duncan, A. M. Ferguson, J. Harper, and K. H. Tonge, J. Mol. Spectrosc. 122, 72 (1987).
F. Hegelund, J. Kauppinen, and F. Winther, Mol. Phys. 61, 261 (1987).
R. Escribano, J. L. Doménech, P. Cancio, J. Ortigoso, J. Santos, and D. Bermejo, J. Chem. Phys. 101, 937 (1994).
C-K. Ni, E. A. Wade, M. V. Ashikhmin, and C. B. Moore, J. Mol. Spectrosc. 177, 285 (1996).
M. Gruebele, J. W. C. Johns, and L. Nemes, J. Mol. Spectrosc. 198, 376 (1999).
L. Nemes, D. Luckhaus, M. Quack, and J. W. C. Johns, J. Mol. Struct. 517-518, 217 (2000).
S. Yamabe, and K. Morokuma, J. Am. Chem. Soc. 100, 7551 (1978).
C. G. Morgan, M. Drabbels, and A. M. Wodtke, J. Chem. Phys. 104, 7460 (1996); 105, 4550 (1996).
R. A. Marcus, Science 256, 1523 (1992).
E. R. Lovejoy, S. K. Kim, and C. B. Moore, Science 256, 1541 (1992).
M. L. Costen, H. Katayanagi, and G. E. Hall, J. Chem. Phys. A 104, 10247 (2000).
K. M. Forsythe, S. K. Gray, S. J. Klippenstein, and G. E. Hall, J. Chem. Phys. 115, 2134 (2001).
C. Baker and D. W. Turner, Chem. Commun. 480 (1969).
D. Hall, J. P. Maier, and P. Rosmus, Chem. Phys. 24, 373 (1977).
B. Niu, Y. Bai, and D. A. Shirley, Chem. Phys. Lett. 201, 217 (1992).
B. Niu, Y. Bai, and D. A. Shirley, J. Chem. Phys. 99, 2520 (1993).
S. Willitsch, A. Haldi, and F. Merkt, Chem. Phys. Lett. 353, 167 (2002).
L. Zhu and P. Johnson, J. Chem. Phys. 94, 5769 (1991).
K. Müller-Dethlefs, E. W. Schlag, E. R. Grant, K. Wang, and V. B. McKoy, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1995).
A. Strobel, I. Fischer, J. Staecker, G. Niedner-Schatteburg, K. Müller-Dethlefs, and V. E. Bondybey, J. Chem. Phys. 97, 2332 (1992).
G. J. Fisher, A. F. MacLean, and A. W. Schnizer, J. Org. Chem. 18, 1055 (1953).
C. E. H. Dessent, S. R. Haines, and K. Müller-Dethlefs, Chem. Phys. Lett. 315, 103 (1999).
P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998).
R. Signorell and F. Merkt, Mol. Phys. 92, 793 (1997).
K. Takeshita, J. Chem. Phys. 96, 1199 (1992).
G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
A. L. L. East, W. D. Allen, and S. J. Klippenstein, J. Chem. Phys. 102, 8506 (1995).