研究生: |
蔡惠雯 Tsai, Huei-wen |
---|---|
論文名稱: |
磷酸轉運膜蛋白TmPit的基因克隆、蛋白質表現與純化 Cloning, expression and purification of phosphate permease, TmPit from Thermotoga maritima |
指導教授: |
孫玉珠
Sun, Yuh-Ju |
口試委員: |
蕭傳鐙
Chwan-Deng Hsiao 潘榮隆 Rong-Long Pan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 磷酸轉運膜蛋白 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
營養元素磷的攝取主要是以磷酸 (inorganic phosphate, Pi) 的形式經由細胞膜磷酸轉運系統 (phosphate transporter, Pit) 進入細胞中。磷酸轉運膜蛋白利用細胞膜裡外磷酸濃度的梯度產生膜電位差,進行次級主動轉運 (secondary active transporter),將磷酸和陽離子 (Na+或H+) 離子共同轉運。來自海棲熱袍菌 (Thermotoga maritima) 的磷酸轉運膜蛋白 (phosphate permease) TmPit具有402個胺基酸,其理論分子量計算為44,089 Da。利用生物資訊程式預測TmPit具有10~12個穿膜二級結構 (transmembrane ),其詳細生物功能及分子結構還不清楚,尚待研究。本研究中我們已利用酵母菌異源系統成功大量表現TmPit,順利地用非離子型的介面活性劑DDM (n-dodecyl-β-D-maltoside) 將TmPit 從微粒體 (microsome) 中萃取出來。接著利用各式特性的管柱層析法純化TmPit,並提升 TmPit 純度。在逆向原態膠體電泳 (reverse native PAGE electrophoresis )、粒徑管柱層析法 (size exclusion chromatography, SEC) 及超高速離心分析 (analytical ultracentrifugation, AUC) 實驗偵測TmPit是單一構型的雙聚體 (dimer) 存在於水溶液中。圓偏光二色光譜 (circular dichroism, CD) 實驗結果顯示TmPit其二級結構主要為α-helix。目前利用酵母菌異源系統已可得到適當量 (0.5 mg/8L) 及一定純度的TmPit蛋白質,但是TmPit的純度與產量均需再提升。正藉由懸滴蒸汽擴散法 (vapor diffusion hanging-drop method) 進行TmPit結晶實驗。希望利用生物物理的方法對TmPit的生物功能進行探討,進一步可利用藉由晶體學方法決定TmPit分子的結構。
Nutrient phosphorus is existed as inorganic phosphate (Pi) that can be uptake by phosphate transport (Pit) system into the cell. Phosphate transporter (Pit) be used the membrane potential from the concentration gradient of phosphate for secondary active transport to be a phosphate and cation (Na+ or H+) co-transporter. The residues number and therotical molecular weight of Thermotoga maritima phosphate permease (TmPit) are 402 residues and 44,089Da, respectively. The analysis of bioinformatics showed that TmPit is composed of 10 - 12 transmembrane domains, and the detailed biological function and molecular structure are still not clear. In this study, we have successfully overexpressed the TmPit in the yeast heterologous expression system, and extracted TmPit from microsome by a non-ionic detergent, DDM (n-dodecyl-β-D-maltoside). We used different types of chromatography to improve the purity of TmPit. The analyses of reverse native PAGE electrophoresis, size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC) showed that TmPit existed as a dimer with a single conformation in an aqueous solution. Circular dichroism (CD) experiment showed that the secondary structure TmPit mainly constructed by α-helix. Today, TmPit could be expressed and purified in the yeast heterologous systems (0.5mg/8L), but the purity and yield have to be improved. We crystallized TmPit by using vapor diffusion hanging-drop method. In the future, we hoped to use the biophysics and crystallography to study the biological functions and molecular structure of TmPit.
文獻
1. Daram, P., Brunner, S., Rausch, C., Steiner, C., Amrhein, N. & Bucher, M. (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11, 2153-66.
2. Okumura, S., Mitsukawa, N., Shirano, Y. & Shibata, D. (1998). Phosphate transporter gene family of Arabidopsis thaliana. DNA Res 5, 261-9.
3. Nikaido, H. & Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49, 1-32.
4. Rao, N. N. & Torriani, A. (1990). Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 4, 1083-90.
5. Agre, P. (2006). The aquaporin water channels. Proc Am Thorac Soc 3, 5-13.
6. Pethig, R. & Kell, D. B. (1987). The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32, 933-70.
7. Chrispeels, M. J., Crawford, N. M. & Schroeder, J. I. (1999). Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 11, 661-76.
8. Wehrle, J. P. & Pedersen, P. L. (1989). Phosphate transport processes in eukaryotic cells. J Membr Biol 111, 199-213.
9. Rosenberg, H., Gerdes, R. G. & Harold, F. M. (1979). Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. Biochem J 178, 133-7.
10. Martinez, P., Zvyagilskaya, R., Allard, P. & Persson, B. L. (1998). Physiological regulation of the derepressible phosphate transporter in Saccharomyces cerevisiae. J Bacteriol 180, 2253-6.
11. Bun-Ya, M., Nishimura, M., Harashima, S. & Oshima, Y. (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11, 3229-38.
12. Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A. J. & Xu, G. (2009). Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57, 798-809.
13. Muchhal, U. S., Pardo, J. M. & Raghothama, K. G. (1996). Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93, 10519-23.
14. Poole, K. & Hancock, R. E. (1984). Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. Eur J Biochem 144, 607-12.
15. Harris, R. M., Webb, D. C., Howitt, S. M. & Cox, G. B. (2001). Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183, 5008-14.
16. van Veen, H. W. (1997). Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299-315.
17. Biber, J., Hernando, N., Forster, I. & Murer, H. (2009). Regulation of phosphate transport in proximal tubules. Pflugers Arch 458, 39-52.
18. Beck, L. & Silve, C. (2001). [Molecular aspects of phosphate homeostasis in mammals]. Nephrologie 22, 149-59.
19. Iharada, M., Miyaji, T., Fujimoto, T., Hiasa, M., Anzai, N., Omote, H. & Moriyama, Y. (2010). Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J Biol Chem 285, 26107-13.
20. Murer, H., Forster, I. & Biber, J. (2004). The sodium phosphate cotransporter family SLC34. Pflugers Arch 447, 763-7.
21. Herak-Kramberger, C. M., Spindler, B., Biber, J., Murer, H. & Sabolic, I. (1996). Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432, 336-44.
22. O'Hara, B., Johann, S. V., Klinger, H. P., Blair, D. G., Rubinson, H., Dunn, K. J., Sass, P., Vitek, S. M. & Robins, T. (1990). Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ 1, 119-27.
23. Miller, D. G., Edwards, R. H. & Miller, A. D. (1994). Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci U S A 91, 78-82.
24. Salaun, C., Rodrigues, P. & Heard, J. M. (2001). Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol 75, 5584-92.
25. Chien, M. L., O'Neill, E. & Garcia, J. V. (1998). Phosphate depletion enhances the stability of the amphotropic murine leukemia virus receptor mRNA. Virology 240, 109-17.
26. Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., Eisen, J. A., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C. & Fraser, C. M. (1999). Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323-9.
27. Versaw, W. K. & Harrison, M. J. (2002). A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14, 1751-66.
28. Schachtman, D. P., Reid, R. J. & Ayling, S. M. (1998). Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol 116, 447-53.
29. Poirier, Y. & Bucher, M. (2002). Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book 1, e0024.
30. Guo, B., Jin, Y., Wussler, C., Blancaflor, E. B., Motes, C. M. & Versaw, W. K. (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177, 889-98.
31. Lin, W. Y., Lin, S. I. & Chiou, T. J. (2009). Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60, 1427-38.
32. Rausch, C. & Bucher, M. (2002). Molecular mechanisms of phosphate transport in plants. Planta 216, 23-37.
33. Bayle, V., Arrighi, J. F., Creff, A., Nespoulous, C., Vialaret, J., Rossignol, M., Gonzalez, E., Paz-Ares, J. & Nussaume, L. (2011). Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23, 1523-35.
34. Pedersen, B. P., Kumar, H., Waight, A. B., Risenmay, A. J., Roe-Zurz, Z., Chau, B. H., Schlessinger, A., Bonomi, M., Harries, W., Sali, A., Johri, A. K. & Stroud, R. M. (2013). Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533-6.
35. Fristedt, U., Weinander, R., Martinsson, H. S. & Persson, B. L. (1999). Characterization of purified and unidirectionally reconstituted Pho84 phosphate permease of Saccharomyces cerevisiae. FEBS Lett 458, 1-5.
36. Ghillebert, R., Swinnen, E., De Snijder, P., Smets, B. & Winderickx, J. (2011). Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 434, 243-51.
37. Bergwitz, C. & Juppner, H. (2011). Phosphate sensing. Adv Chronic Kidney Dis 18, 132-44.
38. Cox, G. B., Webb, D., Godovac-Zimmermann, J. & Rosenberg, H. (1988). Arg-220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in Escherichia coli but not for alkaline phosphatase repression. J Bacteriol 170, 2283-6.
39. Lemieux, M. J., Huang, Y. & Wang da, N. (2005). Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J Electron Microsc (Tokyo) 54 Suppl 1, i43-6.
40. Mansilla, M. C. & de Mendoza, D. (2000). The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146 ( Pt 4), 815-21.
41. Riley, M. (1993). Functions of the gene products of Escherichia coli. Microbiol Rev 57, 862-952.
42. Kim, J., Wess, J., van Rhee, A. M., Schoneberg, T. & Jacobson, K. A. (1995). Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270, 13987-97.
43. Lanfermeijer, F. C., Venema, K. & Palmgren, M. G. (1998). Purification of a histidine-tagged plant plasma membrane H+-ATPase expressed in yeast. Protein Expr Purif 12, 29-37.
44. Porath, J., Carlsson, J., Olsson, I. & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-9.
45. Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J. & Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82, 1096-111.
46. Bottger, P. & Pedersen, L. (2011). Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem 12, 21.
47. Belogurov, G. A., Malinen, A. M., Turkina, M. V., Jalonen, U., Rytkonen, K., Baykov, A. A. & Lahti, R. (2005). Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity. Biochemistry 44, 2088-96.
48. Figler, R. A., Omote, H., Nakamoto, R. K. & Al-Shawi, M. K. (2000). Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376, 34-46.
49. Andre, N., Cherouati, N., Prual, C., Steffan, T., Zeder-Lutz, G., Magnin, T., Pattus, F., Michel, H., Wagner, R. & Reinhart, C. (2006). Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15, 1115-26.
50. Johnston, M. (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51, 458-76.
51. Prive, G. G. (2007). Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388-97.
52. Newstead, S., Ferrandon, S. & Iwata, S. (2008). Rationalizing alpha-helical membrane protein crystallization. Protein Sci 17, 466-72.
53. Lin, S. M., Tsai, J. Y., Hsiao, C. D., Huang, Y. T., Chiu, C. L., Liu, M. H., Tung, J. Y., Liu, T. H., Pan, R. L. & Sun, Y. J. (2012). Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484, 399-403.
54. Jette, M., Vachon, V., Potier, M. & Beliveau, R. (1996). The renal sodium/phosphate symporters: evidence for different functional oligomeric states. Biochemistry 35, 15209-14.
55. Gerchman, Y., Rimon, A., Venturi, M. & Padan, E. (2001). Oligomerization of NhaA, the Na+/H+ antiporter of Escherichia coli in the membrane and its functional and structural consequences. Biochemistry 40, 3403-12.
56. Kilic, F. & Rudnick, G. (2000). Oligomerization of serotonin transporter and its functional consequences. Proc Natl Acad Sci U S A 97, 3106-11.
57. Veenhoff, L. M., Heuberger, E. H. & Poolman, B. (2002). Quaternary structure and function of transport proteins. Trends Biochem Sci 27, 242-9.
58. Salaun, C., Marechal, V. & Heard, J. M. (2004). Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J Mol Biol 340, 39-47.
59. Salaun, C., Gyan, E., Rodrigues, P. & Heard, J. M. (2002). Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. J Virol 76, 4304-11.
60. Hitscherich, C., Jr., Aseyev, V., Wiencek, J. & Loll, P. J. (2001). Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins. Acta Crystallogr D Biol Crystallogr 57, 1020-9.
61. Virkki, L. V., Biber, J., Murer, H. & Forster, I. C. (2007). Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293, F643-54.