研究生: |
李東諺 Li, Dong Yan |
---|---|
論文名稱: |
低溫成長介電層與堆疊垂直閘極對於無接面電荷儲存式快閃記憶體元件之特性研究 Low-Temperature Formed Dielectrics and Stacked Vertical Gate on Characteristics of Junctionless Charge Trapping Flash Memory Devices |
指導教授: |
張廖貴術
Chang-Liao, Kuei Shu |
口試委員: |
趙天生
Chao, Tien Sheng 謝嘉民 Shieh, Jia Min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 堆疊垂直閘極快閃記憶體 、奈米線快閃記憶體 |
外文關鍵詞: | Stacked Vertical Gate Junctionless Flash Memory, Nano-wire Flash Meemory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近在元件日漸微縮的趨勢下,平面式元件微縮空間有限,使得元件的密度難以再提升而且製程上也變的棘手。因此要增加元件密度以及使電特性提高是目前重要的課題。而目前已經有許多解決方法被提出,像是使用高介電常數材料的應用、奈米線通道的結構、無接面快閃記憶體元件的應用及三維堆疊陣列等等。本篇論文以使用了低溫的二氧化矽當作穿隧層用在奈米線通道結構以及可堆疊式電荷捕捉式快閃記憶體元件,以及高介電常數材料做能帶工程的應用,目的是為了減少熱預算與增加單位面積之元件密度。
第一個實驗室使用了較低溫的感應耦合電漿化學氣相沉積(ICPCVD)成長出來的氧化層來當我們的穿隧層(Tunneling Layer),以及使用高介電常數材料做能帶工程應用來當我們的電荷捕捉層,而結構上都是使用奈米線通道式的結構,可以發現使用低溫的感應耦合電漿化學氣相沉積(ICPCVD)成長出來的氧化層與使用急速升溫退火爐(KORONA)成長出來的氧化層擁有差不多好的電特性,而使用二氧化鉿/氮化矽堆疊的電荷捕捉層比單層的氮化矽擁有較快的寫入抹除速度,在可靠度上面也有所改善,因此能帶工程對元件的特性的確有所改善。
第二個實驗也是使用了較低溫的感應耦合電漿化學氣相沉積(ICPCVD)成長出來的氧化層來當我們的穿隧層(Tunneling Layer),以及使用高介電常數材料做能帶工程應用來當我們的電荷捕捉層,而結構上則是使用了無接面奈米線通道式的結構,可以看到無接面式元件它的確都擁有不錯的寫入特性,能帶工程在寫入特性、記憶窗大小及可靠度特性上都有所改善,因此希望可以將ICPCVD成長的電荷穿隧層應用到未來3-D堆疊結構上。
第三個實驗就是將ICPCVD成長的電荷穿隧層應用到可堆疊式閘極元件上面,並且探討能帶工程在這種可堆疊式閘極元件上是否能有特性的改善,可以發現能帶工程在這種可堆疊式閘極元件上的確改善了他的寫抹速度、電荷保持力及電荷耐久力的特性,但發現到所有元件在可靠度上的表現並不是很好,雖然ICPCVD成長的二氧化矽應用在奈米線結構元件上特性表現得不錯,但是在這種可堆疊式閘極元件上ICPCVD成長的二氧化矽還有很大的改善空間。
The scaling trend of flash device is limited by the dimension of planar device, which makes the process flow more complex. How to improve the operational characteristics and increase the device density at the same time become two of the most important issues. Some approaches have been reported such as high-k material, nanowire channel structure, junctionless (JL) channel and 3D array flash memory devices. In this thesis, a low temperature formed SiO2 is proposed as tunneling layer for nano-wire and stacked vertical gate structure charge trapping (CT) flash memory devices. The purposes are to reduce thermal budget and increase device density.
In the first study, a low temperature formed SiO2 is proposed to replace conventional high temperature SiO2 as tunneling layer. HfO2/Si3N4 stacked trapping layers are implemented to improve the operational characteristics of nano-wire inversion mode flash device. It is found that operational characteristics such as program/erase (P/E) speed、retention and endurance characteristics of low temperature formed SiO2 are as good as those with high temperature formed SiO2. HfO2/Si3N4 stacked trapping layers device has better P/E speed and good reliability characteristics truely.
In the second study, a low temperature formed SiO2 is used as tunneling layer and HfO2/Si3N4 stacked trapping layers to improve the operational characteristics of nano-wire junctionless device. It is found that HfO2/Si3N4 stacked trapping layers device has good P/E speed、memory window and reliability characteristics. Therefore, low temperature formed SiO2 is promising to be applied to 3-D stacked device.
In the last study, low temperature formed SiO2 is applied to stacked vertical gate structure. Effect of HfO2/Si3N4 stacked trapping layers on operational characteristics of the stacked vertical gate device is also studied. It is found that HfO2/Si3N4 stacked trapping layers device improves its P/E speed、retention and endrance characteristics truly. However, the reliability characteristics of all devices are not good enough. Therefore, improvement of ICPCVD formed SiO2 is necessary on such a stacked vertical gate structure.
[1] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability, ” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, 1995.
[2] M. White, D. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine,, vol. 16, no. 4, pp. 22 –31, 2000.
[3] M. White, Y. Yang, A. Purwar, and M. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” in Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, pp. 52 –57, 1996.
[4] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, IEEE, vol. 5, pp. 2383–2390, 2002.
[5] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” Electron Devices, IEEE Transactions on, vol. 14, no. 9, p. 629, 1967.
[6] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” Journal of Applied Physics, vol. 21, no. 1, pp. 49 –54, 1950.
[7] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rdEd., Wiley Interscience, Hoboken, N.J. 2007.
[8] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012.
[9] N. Yamauchi, J. J. Hajjar and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film” IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.
[10] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, “A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET” in IEDM Tech, pp. 913-916, 2007.
[11] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, “High-k metal-gate stack and its MOSFET characteristics” Electron Devices, IEEE Transactions on, vol. 25, pp. 408-410, 2004.
[12] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, “MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation” in Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
[13] Y.N.Tang,W.K.Chim, B.J.Chou, Byung, W.K.Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer” Electron Devices, IEEE Transactions on, vol. 51, pp. 1143-1147, 2004.
[14] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, “BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability” in IEDM Tech, pp. 547-550, 2005.
[15] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, “A novel SONOS-type flash device with stacked charge trapping layer” Microelectron, vol. 86, pp. 1863-1865, 2009.
[16] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, “Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions” vol. 3, pp. 477-482, 2011.
[17] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, “Nanowire transistors without junctions” Nat, Nanotechnol, vol. 5, pp. 225-229, 2010.
[18] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, “A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires” Nanoscale Res, Lett, vol. 7, pp. 1-6, 2012.
[19] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, “A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance” in VLSI Symp, Tech, pp. 224-225, 2009.
[20] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, Li Zhang, Y. Iwata, R. Kirisawa, H. Aochi and A. Nitayama, “Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices” in VLSI Symp, Tech, pp. 136-137, 2009,.
[21] J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son, D. W. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, C. Dewill, H. C. Moon, S. Hwang, J. W. Lee, Y. H. Son, U. Chung and W. S. Lee, “Vertical cell array using TCAT(terabit cell array transistor) technology for ultra high density NAND flash memory” in VLSI Symp. Tech, pp. 192-193, 2009.
[22] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell” in Electron Devices Meeting, IEDM, Technical Digest, International, pp. 32.6.1 –32.6.4, 2001.
[23] Z. H. Ye, K. S. Chang-Liao, C. Y. Tsai, T. T. Tsai and T. K. Wang, “Enhanced Operation in Charge-Trapping Nonvolatile Memory Device With Si3N4/Al2O3/HfO2 Charge-Trapping Layer” IEEE Electron Device Lett, vol. 33, pp. 1351-1353, 2012.
[24] T. Yan-Ny, W. K. Chim, C. Wee Kiong, J. Moon-Sig, and B. Jin Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation” Electron Devices, IEEE Transactions on, vol. 53, pp. 654-662, 2006.
[25] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., “Scaling of high-k dielectrics towards sub-1nm EOT” in VLSI Technology, Systems, and Applications, International Symposium on, pp. 247-250, 2003.
[26] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” Electron Devices, IEEE Transactions on, vol. 31, no. 9, pp. 1116 – 1125, 1984.
[27] V.A. Gritsenko; N.D. Dikovskaja; K.P. Mogilnikov, “Band diagram and conductivity of silicon oxynitride films” Thin Solid Films Volume 51, Issue 3, 15, pp. 353–357, 1978.
[28] M. H. White, Y. Yang, P. Ansha, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology” Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 20, pp. 190-195, 1997.
[29] Jeng-Hwa Liao; Jung-Yu Hsieh; Hang-Ting Lue; Ling-Wu Yang; Tahone Yang; Kuang-Chao Chen; Chih-Yuan Lu, “Performance and reliability optimizations of BE-SONOS NAND Flash using SiON bandgap-tuning tunneling barrier” Reliability Physics Symposium (IRPS), IEEE International , pp.639,643, 2010.
[30] Xin Guo; T-P,Ma, “Tunneling leakage current in oxynitride: dependence on oxygen/nitrogen content” Electron Device Letters, IEEE , vol.19, no.6, pp.207,209, 1998.
[31] Teng-Hao Yeh; Pei-Ying Du; Tzu-Hsuan Hsu; Wei-Chen Chen; Hang-Ting Lue; Yen-Hao Shih; Yu-De Huang; Han-Hui Hsu; Lo-Yueh Lin; Ya-Chin King; Tahone Yang; Chih-Yuan Lu, “Increasing VG-type 3D NAND flash cell density by using ultra-thin poly-silicon channels” Memory Workshop (IMW), 2013 5th IEEE International , pp.139,142, 2013.
[32] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Quek, G. Q. Lo and D. L. Kwong, “Demonstration of memory string with stacked junction-less SONOS realized on vertical silicon nanowire” in IEDM Tech, pp. 9.7.1-9.7.4, 2011.
[33] T. Yan-Ny, W. K. Chim, C. Wee Kiong, J. Moon-Sig, and B. Jin Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation” Electron Devices, IEEE Transactions on, vol. 53, pp. 654-662, 2006.
[34] Ping-Hung Tsai; Kuei-Shu Chang-Liao; Chu-Yung Liu; Tien-Ko Wang; Tzeng, P. -J; Lin, C.H.; Lee, L.S.; Tsai, M.-J., “Novel SONOS-Type Nonvolatile Memory Device With Optimal Al Doping in HfAlO Charge-Trapping Layer” Electron Devices, IEEE Transactions on, IEEE, vol. 29, pp. 265-268, 2008.
[35] C. Sung-Jin, D.-I. Moon, J. P. Duarte, K. Sungho, and Y.-K. Choi, “A novel junctionless all-around-gate SONOS device with a quantum nanowire on a bulk substrate for 3D stack NAND flash memory” in VLSI Technology (VLSIT), Symposium on, pp. 74-75, 2011.
[36] Kuzum, D.; Pethe, A.J.; Krishnamohan, Tejas; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; K.C. Saraswat, “Interface-Engineered Ge (100) and (111), N- and P-FETs with High Mobility” Electron Devices Meeting, IEDM, IEEE International , pp.723,726, 2007.
[37] Huet, K.; Toque-Tresonne, I.; Mazzamuto, F.; Emeraud, T.; Besaucele, H., “Laser Thermal Annealing: A low thermal budget solution for advanced structures and new materials” Junction Technology (IWJT), International Workshop on , vol., no, pp.1,6, 18-20 May 2014
[38] Y. Sun, H.Y. Yu,*N. Singh1, K. C. Leong, E. Quek, G.Q. L, D. L. Kwong , “Demonstration of memory string with stacked junction-less SONOS realized on vertical silicon nanowire” Electron Devices Meeting (IEDM), IEEE International, pp.9.7.1,9.7.4, 2011.
[39] H. T. Lue, et al, “A highly scalable 8-layer 3D vertical-gate(VG) TFT NAND Flash using junction-free buried channel BE-SONOS device” VLSI Technology, Symposium on. pp. 131 – 132, 2010.
[40] J. Jan, et al, “Vertical Cell Array using TCAT(Terabit Cell Array Transistor)Technology for Ultra High Density NAND Flash Memory” VLSI Technology, Symposium on. pp. 192 – 193, 2009
[41] J. Kim, et al, “Novel Vertical-Stacked-Array-Transistor(VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD(Solid State Drive)” VLSI Technology, Symposium on. pp 186 – 187, 2009
[42] 陳柏皓, “低溫沉積之界電層與三維堆疊垂直閘極結構運用於電荷儲存式快閃記憶體之特性研究”, 國立清華大學, 2015