簡易檢索 / 詳目顯示

研究生: 羅湖
Kawade Rahul Kisan
論文名稱: 以過渡金屬催化轉換合成複雜有機分子
Transition Metal Catalyzed Transformations for Synthesis of Complex Organic Molecules
指導教授: 劉瑞雄
Liu, Rai Shung
口試委員: 蔡易州
Tsai, Yi Chou
吳明忠
Hou, Durn Ren
侯敦仁
Wu, Ming Jung
劉瑞雄
Liu, Rai Shung
陳銘洲
Chen, Ming Chou
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 527
中文關鍵詞: 金催化銅催化氧化性波瓦羅夫反應氧化性曼尼希反應金卡賓
外文關鍵詞: Gold-Catalyzed, Copper-Catalyzed, Oxidative Povarov reaction, Oxidative Mannich reaction, Gold carbene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述了利用金或銅金屬鹽類的合成有機轉換新途徑。使用這些金屬能夠將易取得的合成基質,經由溫和、高選擇性、高效氧化的轉換途徑得到具有廣泛合成用途的含氮、氧以及硫的複雜有機分子。為了更清楚地瞭解本文,本文分成四個章節。第一章聚焦於金催化氧化環化4-丙二烯-1-炔與8-甲基喹啉氧化物。根據不同的丙二烯基取代物,此催化反應產生多樣含氮及氧的異環之理想產物。此反應包含由丙二烯攻擊初步形成的α-氧-金卡賓,產生烯丙基陽離子中間體,再進行消除或親核加成反應形成多樣的環化產物。而本處所獲得的中間體α-氧-金卡賓之結果,表現出碳陽離子的性質。
    第二章論述了銅催化含氧氧化N-羥基丙炔胺結構重排的曼尼反應。透過含氧氧化這些易取得的3-N-羥基氨基親-1-炔與水、醇或硫醇,可以得到不同的3-取代的3-氨基-2-烯-1-酮。利用克萊森重排以及金催化環化反應,我們開發一連串烯丙基醇、炔醇和烯醇的連續反應,來合成出更具分子複雜性的新產物。
    第三章描述了以銅催化及過氧化叔丁醇氧化N, N-二烷基苯胺、飽和氧或硫雜環
    之波瓦羅夫反應來形成四氫異喹啉衍生物。使用廉價的烷烴類物質作為四和兩個原子建構單元有利機構和經濟效益,這項工程也代表首次成功催化[4+ 2]環加成反應,且不使用 [4p]或[2p]為最初基序。
    第四章呈現了金催化N-羥基苯胺和丙二烯合成2,3-二取代吲哚衍生物;透過甲醛作為添加劑產生原位之硝酮。於合理的範圍內,這種合成方法通用丙二烯和N-羥基苯胺,從而進一步凸顯其綜合效用。


    This dissertation describes development of new synthetic organic transformations by using gold or copper metal salts. The use of these metals enables mild, selective and efficient oxidative transformations of readily available substrates to wide range of synthetically useful nitrogen, oxygen and sulfur containing complex organic molecules. For better understanding the thesis is divided into four chapters.
    The first chapter deals with the Gold-catalyzed oxidative cyclization of 4-allenyl-1-ynes with 8-methylquinoline oxide. The catalytic reaction produces diverse products bearing N and O heterocycles depending on the allenyl substituents. This reaction comprises initial formation of α-oxo gold carbenes that are attacked by allene to form allyl cation intermediates which either undergoes elimination or nucleophilic addition to afford diverse cyclic products. The results obtained here manifested that the intermediate α-oxo-gold carbenes has carbocation character.


    The second chapter deals with the Cu-catalyzed aerobic oxidative Mannich reactions with a skeletal rearrangement of N-hydroxyl propargylamines. These aerobic oxidations of readily available 3-N-hydroxyaminopro-1-ynes with water, alcohols, or thiols afford diverse 3-substituted 3-amino-2-en-1-ones. We developed cascade or sequential reactions of allylic alcohols, alkynols, and allenols, to involve a Claisen rearrangement or gold catalyzed cyclizations, providing new products with molecular complexity.


    The third chapter describes the Cu-catalyzed oxidative Povarov reactions between N,N-dialkylanilines and saturated oxa- or thiacycles with tert-butyl hydroperoxide (TBHP) to form tetrahydroisoquinoline derivatives. The use of cheap alkane based substances as four- and two-atom building units is of mechanistic and practical interest, this work also represents the first achievement of catalytic [4+2]-cycloaddition using neither [4p]- nor [2p]-motifs initially.

    The fourth chapter presents gold-catalyzed syntheses of 2,3-disubstituted indole derivatives from N-hydroxyanilines and allenes; with benzaldehyde as an additive to generate nitrones in situ. This synthetic method is compatible with reasonable range of allenes and N-hydroxyanilines, thus further highlighting its synthetic utility.

    Contents Acknowledgement IV Abstract VI List of Schemes IX List of Tables XII List of Figures XIII List of Publications XIV Abbreviations XV Chapter I: Gold-catalyzed oxidative cyclization of 4-Allenyl-1-ynes with 8-methylquinoline oxide Introduction 2 Results and Discussion 11 Conclusion 25 Experimental Procedure 25 Spectral Data 32 Reference 51 1H and 13C NMR spectra 57 Chapter II: Copper-catalyzed aerobic oxidations of 3-N-hydoxyaminoprop-1-ynes to form 3-substituted 3-Amino-2-en-1-ones: oxidative Mannich reactions with a skeletal rearrangement. Introduction 159 Results and Discussion 169 Conclusion 181 Experimental Procedure 181 Spectral Data 184 Reference 202 X-ray crystallographic data 207 1H and 13C NMR spectra 221 Chapter III: Cu-catalyzed oxidative Povarov reactions between N-alkyl N-methylanilines and saturated oxa- and thiacycles. Introduction 311 Results and Discussion 319 Conclusion 332 Experimental Procedure 332 Spectral Data 337 Reference 353 X-ray crystallographic data 358 1H and 13C NMR spectra 364 Chapter IV: Gold-catalyzed annulations of allenes with N-hydroxyanilines to form indole derivatives with benzaldehyde as a promoter. Introduction 51 Results and Discussion 458 Conclusion 465 Experimental Procedure 465 Spectral Data 470 Reference 477 1H and 13C NMR spectra 482 List of Schemes Chapter I Scheme 1: Intramolecular and intermolecular catalytic generation 4 of oxo gold carbenes Scheme 2: Rearrangement of alkynyl sulfoxides to benzothiepinones 5 Scheme 3: Intramolecular oxo gold carbenoid generation for 5 synthesis of tetrahydrobenz [b]azepin-4-ones Scheme 4: Accessing-oxo gold carbenes via intermolecular oxidation 6 of terminal alkynes Scheme 5: Gold-catalyzed oxidative ring-expansions 7 Scheme 6: Gold carbene mediated isomerization of 1,5-Enynes 7 Scheme 7: Gold-catalyzed carbocyclization of 1,7-allenynes with MeOH 8 Scheme 8: Gold catalyzed oxidative cycloisomerization of 1, 6-enyne 9 Scheme 9: Gold(I)-catalyzed oxidative cyclization of ene-ynes 9 Scheme 10: Gold-catalyzed oxidative cyclization of 1,5-enynes 10 Scheme 11: Gold-catalyzed oxidative cyclization on 1,4-enynes 11 Scheme 12: Synthesis of (4-(1-ethynylcyclopropyl)buta-2,3-dien-2-yl) 14 benzene (I-1a) Scheme 13: Synthesis of 1-(4-(1-ethynylcyclopropyl) buta-2,3-dien-2-yl) 15 -4-methylbenzene. (I-1d) Scheme 14: Synthesis of (3-(1-ethynylcyclopropyl)buta-1,2-dien-1-yl)benzene 15 (I-3a) Scheme 15: Synthesis of 5-(1-ethynylcyclopropyl)penta-3,4-dien-1-ol (I-5a) 16 Scheme 16: Synthesis of 3-(2-(1-ethynylcyclopropyl)vinylidene) 17 heptan-1-ol (I-5c) Scheme 17: Synthesis of N-(5-(1-ethynylcyclopropyl) 17 penta-3,4-dienyl)-4-methylbenzene- sulfonamide (I-5f) Scheme 18: Proposed reaction mechanism 21 Scheme 19: Gold-catalyzed reaction on 4-allenyl-1-yne (I-5a) 22 Scheme 20: Synthetic applications 25 Chapter II Scheme 1: Classical Mannich reaction 161 Scheme 2: Iminium ion generation 162 Scheme 3: Ruthenium catalyzed oxidative cyanation of tertiary amines 162 Scheme 4: Copper catalyzed aerobic oxidative alkylation 163 Scheme 5: Oxidative Mannich reaction of tertiary amines and methyl ketones 164 Scheme 6: Cu-Catalyzed oxidative coupling reactions of 165 N-phenyltetrahydroisoquinoline Scheme 7: Iron-catalyzed oxidative phosphonation 166 Scheme 8: Cu-catalyzed skeletal rearrangement of O-propargylic oximes 167 Scheme 9: Silver catalyzed skeletal rearrangement of aldoximes 168 Scheme 10: Oxidative Mannich reactions with a skeletal rearrangement 168 Scheme 11: Synthesis of N-phenyl-N-(3-phenylprop-2-ynyl)hydroxylamine 171 Scheme 12: Possible reaction mechanism 180 Chapter III Scheme 1: Two and three component Povarov reaction 313 Scheme 2: Chiral Bronsted acid-catalyzed enantioselective 313 synthesis of tetrahydroquinolines Scheme 3: Oxidative C-H bond functionalization of amines 314 Scheme 4: Copper-catalyzed coupling of enol ethers 315 Scheme 5: I2 catalyzed aza-Diel-Alder reaction 316 Scheme 6: Dual C-H functionalization of N-aryl amines 316 Scheme 7: Photo-redox catalyzed radical addition/cyclization reactions 317 Scheme 8: Photo-assisted multi-component reactions 318 Scheme 9: Oxidative Povarov reactions using oxa- and thiacycles 318 Scheme 10: Synthesis of N,N-dimethylaniline (III-1b) 322 Scheme 11: Control experiments (Eq-1-3) 328 Scheme 12: Control experiments (Eq 4-5) 329 Scheme 13: Deuterium lebelling experiments 330 Scheme 14: Plausible mechanisms 331 Chapter IV Scheme 1: Fisher-indole synthesis 452 Scheme 2: Larock indole synthesis 453 Scheme 3: Bartoli indole synthesis 454 Scheme 4: Gold-catalyzed rearrangement of O-vinyl oximes 454 Scheme 5: Michael addition/[3,3] sigma tropic rearrangement reaction 455 Scheme 6: Synthesis of ethyl 2,3-dihydro-1H-pyrrolo[1,2-a]indole-9-carboxylate 456 Scheme 7: Au-catalyzed synthesis of 2-alkylindoles 456 Scheme 8: Cooperative Au/Zn catalysis in indole synthesis 457 Scheme 9: Gold-catalyzed syntheses of indole derivatives from 458 N-hydroxyanilines and allenes Scheme 10: Gold-catalyzed annulations of allenes with N-hydroxyanilines 458 Scheme 11: Synthesis of tert-butyl(hexa-4,5-dien-1-yloxy)dimethylsilane (IV-1a) 459 Scheme 12: Synthesis of N-phenylhydroxylamine (IV-3a) 459 Scheme 13: Synthesis of 1-methyl-4-(penta-3,4-dien-1-yl)benzene (IV-1c) 460 Scheme 14: Control experiments 464 Scheme 15: Possible reaction mechanism 465 List of Tables Chapter I Table 1: Oxidation cyclizations with various catalysts 12 Table 2: Substrate scope for oxidative cyclization 18 Table 3: Expanded substrate scope 20 Table 4: Three-component oxidative cyclization 23 Chapter II Table 1: Catalytic oxidations with various catalysts 170 Table 2: Catalytic oxidations with water 172 Table 3: Catalytic oxidations with alcohols and thiols 174 Table 4: Oxidations/Claisen rearrangement cascades 176 Table 5: Synthetic utility with two-step reactions 177 Table 6: Effects of oxidants on water as a nucleophile 179 Chapter III Table 1: Optimized conditions for oxidative cycloadditions 320 Table 2: Cycloadditions with THF 323 Table 3: Cycloadditions with tetrahydropyran 325 Table 4: Cycloadditions with thia-cycles 327 Chapter IV Table 1: The reactions of various allene substrates 461 Table 2: The reactions with various N-hydroxyanilines 463 List of Figures Chapter I Figure 1: Singlet and triplet carbenes 2 Figure 2: Fischer and Schrock carbenes 3 Figure 3: Reactivity of metal carbenes with allene 11 Figure 4: List of substrates (I-1 and I-3) 13 Figure 5: List of substrates (I-5) 14 Chapter II Figure 1: List of substrates 171 Figure 2: Control experiment 178 Chapter III Figure 1: List of substrates 321 Chapter IV Figure 1: List of allene substrates 458 Figure 2: List of N-hydroxyl anilines 459

    Chapter I
    [1] (a) Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W.; Eds., Pergamon Press: Oxford, 1982. (b) Green, M. L. H.; Davies, S. G. Philos. Trans. R. Soc. London A 1988, 326, 501. (c) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987. (d) Tsuji, J. Transition Metal Reagents and Catalysts; John Wiley & Sons Ltd.: New York, 2000. (e) Seebach, D. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320. (f) Yet, L. Chem. Rev. 2000, 100, 2963.
    [2] (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M. Science 1991, 254, 1471. (d) Nakamura I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127.
    [3] (a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. (b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. (c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94. (d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. (e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
    [4] (a) Gorin, D. J., Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351; (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2008, 46, 3410. (d) Jimènez-Núnèz, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (e) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91. (f) Gaillard, C. S.; Cazin, J.; Nolan, S. P. Acc. Chem. Res. 2012, 45, 778. (g) Crone, B.; Kirsch, S. F. Chem. Eur. J. 2008, 14, 3514. (h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
    [5] (a) Organic Chemistry Morrison, R.T.; Boyd, R.N. pp. 473. (b) Fischer, E. O.; Maasböl, A. Angew. Chem., Int. Ed. 1964, 3, 580. (c) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2008, 47, 6754. (d) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. (e) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
    [6] For a Review on gold N-heterocyclic carbenes, see: (a) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: (b) Raubenheimer, H. G.; Esterhuysen, M.W.; Timoshkin, A.; Chen, Y.; Frenking, G. Organometallics 2002, 21, 3173. (c) Fañanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666.
    [7] For recent examples: see: (a) Ando, K. J. Org. Chem. 2010, 75, 8516. (b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. (c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A 2010, 114, 12893. (d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720.
    [8] (a) James, M. C. B.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 273. (b) Nevado, C.; de Haro, T. In New Strategies in Chemical Synthesis and Catalysis; Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp 247. (c) Xiao, J.; Li, X. Gold α-Oxo Carbenoids in Catalysis: Catalytic Oxygen-Atom Transfer to Alkynes. Angew. Chem., Int. Ed. 2011, 50, 7226. (d) Moss, R. A., Doyle, M. P., Eds. Contemporary Carbene Chemistry; Wiley: New York, 2014; Chapter 16. (e) Davies, H. M. L.; Beckwith, R. E. J. Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chem. Rev. 2003, 103, 2861. (f) Davies, H. M. L.; Denton, J. R. Application of Donor/Acceptor-Carbenoids to the Synthesis of Natural Products. Chem. Soc. Rev. 2009, 38, 3061; For 8-methylquinoline oxides, see selected examples: (g) Li, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. (h) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. (i) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. (j) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200; For other pyridine N-oxides, see selected examples: (k) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
    [9] (a) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. J. Am. Chem. Soc. 2003, 125, 4692. (b) Barluenga, J.; Lonzi, G.; Riesgo, L.; López, L. A.; Tomas, M. J. Am. Chem. Soc. 2010, 132, 13200. (c) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312. (d) Doyle, M. P.; Hu, W.; Timmons, D. J. Org. Lett. 2001, 3, 3741.
    [10] Selected reviews: (a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. (c) Manning, J. R.; Davies, H. M. L. Nature, 2008, 451, 417. (d) Doyle, M. P.; McKervy, M. A.; Ye, T. Modern Catalytic Method for Organic Synthesis with Diazo Compounds; John Wiley & Sons: Wiley; New York, 1998. (e) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (f) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061. (g) Zhang, Z.; Wang, J. Tetrahedron, 2008, 64, 6577.
    [11] Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
    [12] Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
    [13] (a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (b) Li, C.-W.; Pati, K.; Lin, G.-Y.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed. 2010, 49, 9891.
    [14] Selected reviews (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (b) Marinetti, A.; Jullien, H.; Voituriez, A.; Chem. Soc. Rev., 2012, 41, 4884. (c) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2006, 45, 7896. (d) Fürstner, A. Chem. Soc. Rev., 2009, 38, 3208. (e) Soriano, E.; Marco-Contelles, J. Acc. Chem. Res., 2009, 42, 1026.
    [15] Luzung, R. M.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
    [16] (a) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A.; Chem. Rev., 2011, 111, 1954. (b) Cadran, N.; Cariou, K.; Herve, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Constelles, J. J. Am. Chem. Soc. 2004, 126, 3408. (c) Matsuda, T.; Kadowski, S.; Goyam, T.; Murakami, M. Synlett, 2006, 575. (d) Cheong, P. H.-Y.; Morganelli, P.; Luzung, M. R.; Houk, K. N.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517.
    [17] Lemiere, G.; Gandon, V.; Agenet, N.; Goddard, J.-P.; de Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed., 2006, 45, 7596.
    [18] For oxidation of ruthenium-carbenoid intermediates with N-hydroxyimides in ruthenium-catalyzed cycloisomerization see: (a) Trost, B. M.; Rhee, Y.-H. J. Am. Chem. Soc. 1999, 121, 11680. (b) Trost, B. M.; Rhee, Y.-H. J. Am. Chem. Soc. 2002, 124, 2528.
    [19] (a) Oda, R.; Mieno, M.; Hayashi, Y. Tetrahedron Lett. 1967, 2363. (b) Dost, F.; Gosselck, J. Tetrahedron Lett. 1970, 5091. (c) Takebayashi, M.; Kashiwada, T.; Hamaguchi, M.; Ibata, T. Chem. Lett. 1973, 809. (d) Moody, C. J.; Slawin, A. M. Z.; Taylor, R. J.; Williams, D. J. Tetrahedron Lett. 1988, 29, 6009.
    [20] Witham, C. A.; Maule, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838;
    [21] Uetake, Y., Niwa, T., Nakada, M.; Tetrahedron Lett. 2014, 55, 6847.
    [22] Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911
    [23] (a) Ghorpade, S.; Su, M.-D.; Liu, R.-S. Angew. Chem., Int. Ed. 2013, 52, 4229. (b) This bisected conformation allows an efficient interaction of cyclopropyl s bonding electrons with their adjacent empty pi-orbital. See G. A. Olah, V. Reddy, G. K. S. Prakash, Chemistry of the Cyclopropyl Group, Part 2 (Eds.: Z. Rappoport), Wiley, Chichester, UK, 1995, pp. 813
    [24] See selected examples: (a) Linday, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charett, A. B. J. Am. Chem. Soc. 2013, 135, 1463. (b) Huval, C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020. (c) Chen, J.; Lu, L.; Ma, S. Tetrahedron 2008, 64, 8899. (d) Yao, T.; Hong, A.; Sarpong, R. Synthesis, 2006, 3605. (e) Taherirastgar, F.; Brandsma, L. Synth. Commun. 1997, 27, 4035.
    [25] Cyclopropyl alkynes were frequently used in gold-catalytic reactions because their reactivities are greater than normal alkynes. See: (a) Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6306. (b) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430. (c) Liao, H. H.; Liu, R.-S. Chem. Commun. 2011, 47, 1339. (d) Yang, C.-Y.; Lin, M.-S.; Liao, H.-H.; Liu, R.-S. Chem. Eur. J. 2010, 16, 2696; Also see 13b.
    [26] The barriers are expected to be small in our systems because a cyclopropyl group and gold are present for allyl cations D/D’; (a) Bollinger, J. M.; Brinich, J. M.; Olah, G. A. J. Am. Chem. Soc. 1970, 92, 4025. (b) Bhunia S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488. (c) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang Y.; Goddard W. A. III; Toste, F. D. Nature Chemistry, 2009, 1, 482.
    [27] We postulate that the resulting α-oxo carbene A preferably undergoes a dis-rotation that has a smaller barrier than con-rotation (see ref. 23a). Since there are two possible rotation mode (inward versus outward) for starting I-1a, the resulting allyl cation D is expected to exist as a mixture of syn/anti forms, its syn/anti ratio depends the relative rates of the two rotations.

    [28] (a) Patil, N. T.; Lutete, L. M.; Nishina, N.; Yamamoto, Y. Tetrahedron Lett. 2006, 47, 4749. (b) Lalonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. (c) Kinder, R. E.; Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10, 3157. (d) Butler, K. L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 5175. (e) Duris, A.; Barber, D. M.; Sanganee, H. J.; Dixon, D. J. Chem. Commun. 2013, 49, 2777.
    [29] Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944.
    [30] Miller, R. D.; McKean, D. R. J. Org. Chem. 1981, 46, 2412.
    [31] Sneddon, H. F.; Gaunt, M. J. Ley, S. V. Org. Lett. 2003, 5, 1147.
    [32] Emanuelsson, R.; Wallner, A.; Eugene A. M. Ng.; Smith J. R.; Ott, S.; Ottosson, H. Angew. Chem., Int. Ed. 2013, 52, 983.

    Chapter II
    [1] (a) Tramontini, M.; Angiolini, L.; Mannich-Bases, Chemistry and Uses, CRC, Boca Raton, FL, 1994 (b) Tramontini, M.; Angiolini, L.; Ghedeni, N. Polymer 1988, 29, 771. (c) Hellmann, H.; Opitz, G. α-Aminoalkylierung, Verlag Chemie,Weinheim, 1960 (d) Reichert, B.; Die Mannichreaktion, Springer, Berlin, 1959 (e) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
    [2] Intramolecular Mannich reactions: Overmann, L. E.; Ricca; D. J. in Comprehensive Organic Synthesis, Vol. 2 (Eds.: Trost, B. M.; Fleming, I.; Heathcock C. H.), Pergamon, Oxford, 1991, pp. 1007.
    [3] (a) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076. (b) Tourè, B. B., Chem. Rev. 2009, 109, 4439. (c) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044. (d) Traxler, P.; Trinks, U.; Buchdunger, E.; Mett, H.; Meyer, T.; Müller, M.; Regenass, U.; Rösel, J.; Lydon, N. J. Med. Chem. 1995, 38, 2441.
    [4] (a) Murahashi, S.-I.; Komiya, N. Ruthenium-catalyzed oxidation for organic synthesis. In Modern Oxidation Methods, 2nd Ed.; Baeckvall, J.-E., Ed. Wiley-VCH: Weinheim, Germany, 2010; pp 241. (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (c) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
    [5] (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. (b) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381. (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (d) Scheuermann, C. J.; Chem. Asian J. 2010, 5, 436. (e) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353.
    [6] (a) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Fares, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106. (b) Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214. (c) Xie, J.; Huang, Z.-Z. Angew. Chem., Int. Ed. 2010, 49, 10181. (d) Ghobrial, M.; Schnuerch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 8781.
    [7] Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am.Chem. Soc. 2006, 128, 5648.
    [8] (a) Wang, M.-Z.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2010, 16, 5723 (b) Murahashi, S.-I.; Naota, T.; Yonemura, K.; J. Am. Chem. Soc. 1988, 110, 8256 (c) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S.; J. Am. Chem. Soc. 1990, 112, 7820.
    [9] (a) Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Chem. Commun. 2010, 46, 2739 (b) Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org. Chem. 2010, 75, 3916 (c) Shirakawa, E.; Uchiyama, N.; Hayashi, T. J. Org. Chem. 2011, 76, 25 (d) Ghobrial, M.; Harhammer, K.; Mihovilovic, M. D.; Schnürch, M. Chem. Commun. 2010, 46, 8836 (e) Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.
    [10] For aerobic oxidation of tertiary amines see (a) Baslè, O.; Li, C.-J. Chem. Commun. 2009, 4124. (b) Tian, J.-S.; Loh, T.-P. Angew. Chem., Int. Ed. 2010, 49, 8417. (c). Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.; Akutagawa, S.; Tetrahedron Lett. 1991, 32, 5991. (d) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005. (e) Yu, A.; Gu, Z.; Chen, D.; He, W.; Tan, P.; Xiang, J. Catal. Commun. 2009, 11, 162. (f) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
    [11] (a) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (b) Hashimoto, T.; Maruoka, K. Chem. Rev. DOI: 10.1021/cr5007182. (c) Tabolin, A. A.; Ioffe, S. L. Chem. Rev. 2014, 114, 5426. (d) Qian, C.; Wang, L. Tetrahedron 2000, 56, 7193. (e) Diez-Martinez, A.; Tejero, T.; Merino, P. Tetrahedron Asymmetry 2010, 21, 2934.
    [12] (a) Kawakami, T.; Ohtake, H.; Arakawa, H.; Okachi, T.; Imada, Y.; Murahashi, S.-I. Org. Lett. 1999, 1, 107. (b) Merino, P.; Jimenez, P.; Tejero, T. J. Org. Chem. 2006, 71, 4685. (c) Murahashi, S.; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. 2002, 124, 2888.
    [13] (a) Mannich, C.; Krosche, W. Arch. Pharm. 1912, 250, 647. (b) Blicke, F. F. Org. React. 1942, 1, 303. (c) Tramontini, M. Synthesis 1973, 703.
    [14] (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (c) Candeias, N. R.; Montalbano, F.; Cal, P. M. S. D.; Gois, P. M. P. Chem. Rev. 2010, 110, 6169. (d) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. (e) Yang, Y.; Phillips, D. P.; Pan, S. Tetrahedron Lett. 2011, 52, 1549. (f) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925. (g) Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K.; J. Org. Chem. 2011, 76, 6030. (h) Colpaert, F.; Mangelinckx, S.; Kimpe, N. D. Org. Lett. 2010, 12, 1904. (i) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (j) Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N. S.; Turner, J. M.; Thayumanavan, R.; Barbas III, C. F. J. Org. Chem. 2003, 68, 9624.
    [15] (a) Bur, S. K.; Martin, S. F. Tetrahedron 2001, 57, 3221. (b) Martin, S. F. Acc. Chem. Res. 2002, 35, 895. (c) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991. (d) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (e) Ollevier, T.; Nadeau, E. Org. Biomol. Chem. 2007, 5, 3126.
    [16] Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.
    [17] Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047.
    [18] Shen,Y.; Li, M.; Wang, S.; Zhan,T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953.
    [19] (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (b) Li, Z. P.; Li, C. J. Eur. J. Org. Chem. 2005, 3173 and references therein. (c) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443.
    [20] (a) Murahashi, S.-I.; Imada, Y. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds; Wiley- VCH: Weinheim, Germany, 2004; Vol. 2, p 497. (b) Murahashi, S.-I.; Komiya, N. In Modern Oxidation Methods; Ba¨ckvall, J.-E., Ed.; Wiley-VCH: Weinheim, Germany, 2004; p 165. (c) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931.
    [21] Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
    [22] Han, W.; Ofial, A. R. Chem. Commun. 2009, 5024.
    [23] Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
    [24] (a) Merino, p.; Tejero, T. Synlett., 2011, No. 14, 1965 (b) Qian, C.; Wang, L. Tetrahedron 2000, 56, 7193. (c) Diez-Martinez, A.; Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21, 2934.
    [25] (a) Nakamura, I.; Araki, T.; Zhang, D.; Kudo, Y.; Kwon, E.; Terada, M. Org. Lett. 2011, 13, 3616. (b) Nakamura, I.; Zhang, D.; Terada, M. J. Am. Chem. Soc. 2010, 132, 7884. (c) Merino, P.; Franco, S.; Garces, N.; Merchan, F. L.; Tejero, T. Chem. Commun. 1998, 493. (d) Ukaji, Y.; Yoshida, Y.; Inomata, K. Tetrahedron Asymmetry 2000, 11, 733.
    [26] Wang, X.; Abrahams, Q. M.; Zavalij, P. Y.; Doyle, M. P Angew. Chem., Int. Ed. 2012, 51, 5907.
    [27] Nakamura, I.; Kudo,Y.; Terada, M. Angew. Chem., Int., Ed. 2013, 52, 7536.
    [28] Ren, H.; Luo, Y.; Ye, S.; Wu, J. Org. Lett. 2011, 13, 2552.
    [29] For the use of arynes in organic synthesis see: Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.
    [30] (a) Angelov, P. Synlett 2010, 1273. (b) Yuan,Y.; Yang, R.; Negrerie, D. Z.; Wang, J.; Du,Y.; Zhao, K.; J. Org. Chem. 2013, 78, 5385.
    [31] For the synthesis of β-oxoamides and α-substituted β-oxoamides, see selected examples: Xiang, D.; Wang, K.; Liang, Y.; Zhou, G.; Dong, D. Org. Lett. 2008, 10, 345.
    [32] CCDC:- 998937 (2-3g) and 998936 (2-3l) contain the supplementary crystallographic data for this paper.
    [33] See review: A. M. Martín Castro, Chem. Rev. 2004, 104, 2939.
    [34] (a) For Cu-catalyzed aerobic oxidations of N-hydroxyamines to nitrone species, see Gribble, G. W.; Barden, T. C. J. Org. Chem. 1985, 50, 5900. (b) Photooxidations of N-hydroxyamines was reported to generate nitrone and H2O2 efficiently, see Sakurai, T.; Uematsu, Y.; Tanaka, O.; Inoue, H. J. Chem. Soc. Perkin Trans. 2, 1992, 2163.
    [35] Under basic conditions, isoxazolium salts VIII could react with strongly basic NaCN, NaOH, NaOMe, or NaOAc to give similar products including β-oxoamides 2 or 3-amino-2-en-1-one 3; the mechanism was postulated to proceed with α-ketonketenimine intermediates IX. This pathway was unlikely to occur under our neutral conditions. See: Woodward, R. B.; Olofson, R. A. Tetrahedron 1966, 22, 415 and reference therein.

    [36] For the generation of amidoxyl radicals from metal-free aerobic oxidations of N-hydroxyamines, see selected examples: (a) Berti, C.; Grierson, L.; Grimes, J. A.-M.; Perkins, M. J.; Terem, B. Angew. Chem., Int. Ed. Engl. 1990, 29, 653. (b) Schmidt, V. A.; Alexanian, E. J. Angew. Chem., Int. Ed. 2010, 49, 4491. (c) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672.
    [37] (a) Lehrich, F.; Hopf, H.; Grunenberg, J. Eur. J. Org. Chem. 2011, 2705. (b) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466. (c) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739. (d) Bordwell, F. G.; Liu, W. Z. J. Am. Chem. Soc. 1996, 118, 8777.
    [38] (a) see 30a (b) Shawali, A. S.; Naoum, M. M.; Ibrahim, S. A. Bull. Chem. Soc. Jpn. 1972, 45, 2504. (c) Neo, A. G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C. F. Tetrahedron Lett. 2005, 46, 23. (d) Schirok, H.; Alonso-Alija, C.; Michels, M. Synthesis 2005, 18, 3085. (e) Limanto, J.; Krska, S. W.; Dorner, B. T.; Vazquez, E.; Yoshikawa, N.; Tan, L. Organic Letters, 2010, 12, 512. (f) Singh, S. J.; Singh, O. M. Tetrahedron Lett. 2008, 49, 3991.

    Chapter III
    [1] (a) Modern Heterocyclic Chemistry; Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J., Eds.; Wiley-VCH: Weinheim, Germany, 2011.; For reviews on the chemistry of quinoline and quinazoline, see: (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (c) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223. (d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (e) Kumar, A.; Srivastava, S.; Gupta, G.; Chaturvedi, V.; Sinha, S.; Srivastava, R. ACS Comb. Sci. 2011, 13, 65. (f) Girling, P. R.; Kiyoib, T.; Whiting, A. Org. Biomol. Chem. 2011, 9, 3105.
    [2] (a) Sridharan, V.; Suryavanshi, P. A.; Menèndez, J. C. Chem. Rev. 2011, 111, 7157. (b) Kouznetsov, V.; Palma, A.; Ewert, C.; Varlamov, A. J. Heterocycl. Chem. 1998, 35, 761. (c) Mitchinson, A.; Nadin, A. J. Chem. Soc. Perkin Trans. 1 1999, 18, 2553. (d) Mitchinson, A.; Nadin, A. J. Chem. Soc. Perkin Trans. 1 2000, 17, 2862.
    [3] For reviews on hetero-DA reaction, see: (a) Tietze, L. F.; Kettschau, G. in Topics in Current Chemistry, ed. P. Metz, Springer-Verlag, Berlin, 1997, vol. 189, pp. 1–120, and references therein; (b) Boger, D. L. and Weinreb, S. M. in Hetero Diels–Alder Methodology in Organic Synthesis, ed. H. Wasserman, Academic Press, San Diego, CA, 1987, vol. 47. (c) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron, 1996, 52, 15031. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (e) Wender, P. A.; Verma, V. A.; Paxton, T. H.; Pillow, T. H. Acc. Chem. Res., 2008, 41, 40. (f) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. (g) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (h) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462. (i) Lòpez, F.; Mascareñas, J. Chem. Soc. Rev. 2014, 43, 2904.
    [4] (a) Weintraub, P. M.; Sabol, J. S.; Kane, J. M. Borcherding, D. R. Tetrahedron 2003, 59, 2953. (b) Buffat, M. G. P. Tetrahedron 2004, 60, 1701. (c) Felpin, F.-X.; Lebreton, J. Curr. Org. Synth. 2004, 1, 83.
    [5] (a) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099. (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (c) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
    [6] (a) Monbaliu, J.-C. M.; Masschelein, K. G. R.; Stevens, C. V. Chem. Soc. Rev. 2011, 40, 4708. (b) Rowland, G. B.; Rowland, E. B.; Zhang, Q.; Antilla, J. C. Curr. Org. Chem. 2006, 10, 981. (c) Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137.
    [7] (a) Ackermann, L. Acc. Chem. Res., 2014, 47, 281. (b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (c) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichmica Acta, 2012, 45, 31. (d) Arockiam, P. B.; Bruneau, C.; P. Dixueuf, H. Chem. Rev. 2012, 112, 5879. (e) Wencel-Delord, J.; Droge, T.; Liu F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (f) Satoh, T.; Miura, M. Chem.–Eur. J. 2010, 16, 11212. (g) Haibach, M. C.; Kundu, S.; Brookhart, M.; Goldman, A. S. Acc. Chem. Res. 2012, 45, 947.
    [8] (a) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656. (b) Kouznetsov, V. V. Tetrahedron, 2009, 65, 2721. (c) Bello, D.; Ramòn, R.; Lavilla, R. Curr. Org. Chem. 2010, 14, 332. (d) McCarrick, M. A.; Wu, Y. D.; Houk, K. N. J. Org. Chem. 1993, 58, 3330. (e) Whiting, A.; Windsor, C. M. Tetrahedron, 1998, 54, 6035.
    [9] Povarov reactions catalyzed by acid catalysts, see selected examples: (a) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobson, E. N. Science 2010, 327, 986. (b) Dagousset, G.; Zhu, J.; Masson, G. J. Am. Chem. Soc. 2011, 133, 14804. (c) Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. (d) He, L.; Bekkaye, M.; Retailleau, P.; Masson, G. Org. Lett. 2012, 14, 3158.
    [10] (a) Ishitani, H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357. (b) Sundararajan, G.; Prabagaran, N.; Varghese, B. Org. Lett. 2001, 3, 1973. (c) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070.
    [11] Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598.
    [12] (a) Zhao, C.; Crimmin, M. R.; Toste, F. D.; Bergman, R. G. Acc. Chem. Res. 2014, 47, 517. (b) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. (c) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (d) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412. (e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (f) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (g) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (h) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (i) Engle, K. M.; Mei, T.- S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
    [13] Other selected reviews on amine C−H functionalization: (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443. (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. ‒Eur. J. 2010, 16, 2654. (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293. (e) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374. (f) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem.‒Eur. J. 2012, 18, 10092. (g) Jones, K. M.; Klussmann, M. Synlett. 2012, 23, 159. (h) Qin, Y.; Lv, J.; Luo, S. Tetrahedron Lett. 2014, 55, 551.
    [14] Selected reviews on the CDC reaction: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. (c) Yoo, W. J.; Li, C. J. Top. Curr. Chem. 2010, 292, 281. (d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111, 1780. (f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (g) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353. (h) Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
    [15] (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312. (b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931. (c) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490. (d) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
    [16] (a) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810. (b) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (d) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968. (e) Li, Z. P.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
    [17] L. Huang, X. Zhang and Y. Zhang, Org. Lett. 2009, 11, 3730.
    [18] Reddy, B. V. S.; Grewal, H. Tetrahedron Lett. 2011, 152, 761.
    [19] Min, C.; Asnchawala, A.; Seidel, D. Org. Lett. 2014, 16, 2756.
    [20] Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Org. Lett. 2012, 14, 4030.
    [21] For selected pioneering work in the field of photocatalyzed generation of iminium ions, see: (a) Pandey, G.; Kumaraswamy, G. Tetrahedron Lett. 1988, 29, 4153. (b) Pandey, G.; Kumaraswamy, G.;Yella Reddy, P. Tetrahedron 1992, 8, 8295. (c) Pandey, G.; Sudha Rani, K.; Lakshamaiah, G. Tetrahedron Lett. 1992, 33, 5107.
    [22] Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823.
    [23] Wei, W.-T.; Song, R.-J.; Li, J.-H. Adv. Synth. Catal. 2014, 356, 1703.
    [24] Zhang, Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949.
    [25] Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497.
    [26] We noted a recent work of Sun and coworkers involving photoinitiated oxidation of THF solvent under air to generate 2,3-dihydrofuran species; but the other reactant is still a reactive heterodiene. The product yields were moderate (40–50%) for most instances using THF as a nucleophile. H. Guo, C. Zhu, J. Li, G. Xu and J. Sun, Adv. Synth. Catal. 2014, 356, 2801.
    [27] The reactions of N,N-dimethylaniline and THF with Pd(OAc)2 (0.5 equiv.) in the absence of oxidants were reported to give distinct products in low yields for most aniline substrates; see ref. 27a. (a) Sakakibara, T.; Karasumara, S.; Kawano, I.; J. Am. Chem. Soc. 1985, 107, 6417. (b) Zhang, J.; Li, C.-J. J. Org. Chem. 2002, 67, 3969. (c) Lang, Y.; Souza, F. E. S.; Xu, X.; Taylor, N. J.; Assoud, A.; Rodrigo, R. J. Org. Chem. 2009, 74, 5429. (d) Zhao, Y.; Ang, L. A.; Ng, A. W. T.; Yeung, Y.-Y. RSC Adv. 2013, 3, 19765.
    [28] We have conducted a control experiment to confirm that the reaction of Cu(s) with TBHP (2 equiv.) in water (90 1C, 24 h) gave water soluble Cu-complexes in 5% yield. This salt contained Cu in 28 wt% and its 5 mol % Cu loading enabled a cycloaddition of aniline III-2b (1.0 equiv.) with THF (10 equiv.) in water to yield desired III-3b in 75% yield.
    [29] CCDC 1039307 (III-3f).
    [30] Thermal decomposition of TBHP without metal catalyst can proceed at 120 oC whereas the temperature was 90 oC for eqn (1). See: He, T.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
    [31] (a) For Povarov reactions using amines, aldehydes and alkenes in non-aqueous solution, see selected examples: Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1996, 118, 8977. (b) Boglio, C.; Lemière, G.; Hasenknopf, B.; Thorimbert, S.; Lacòte, E.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 3324.
    [32] For the generation of THF radicals from the M–TBHP system (M= Cu(I), Ni(II) and iodide), see recent examples: (a) Liu, D.; Liu, C.; Li, H.; Lei, A. Chem. Commun. 2014, 50, 3623. (b) Zhao, L.; Tang, S.; Qi, X.; Lin, C.; Lin, C.; Liu, K.; Liu, C.; Lan, Y.; Lei, A. Org. Lett. 2014, 16, 3404. (c) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 4453. (d) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem. –Eur. J. 2011, 17, 4085. (e) Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Chem. Commun. 2014, 50, 11738. (f) Rout, S. K.; Guin, S.; Ali, W.; Gogoi, A.; Patel, B. K. Org. Lett. 2014, 16, 3086.
    [33] The use of Cu(s)/TBHP for the sp3 C–H bond activation of ethers was recently reported; see: Cui, Z.; Shang, X.; Shao, X.-F.; Liu, Z.-Q. Chem. Sci. 2012, 3, 2853.
    [34] (a) Liu, Z.; Zhang, J.; Chen. S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231. (b) Guo, S.-r.; Yuan, Y.-q.; Xiang, J.-n. Org. Lett. 2013, 15, 4654.
    [35] (a) Canonne, P.; Foscolos, G. B.; Bélanger, D. J. Org. Chem. 1980, 45, 1828. (b) Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549. (c) Barluenga, J.; Bayon, A. M.; Asensio, G. Chem. Commun. 1984, 1334. (d) E. C. Ashby, G. Fred Willard, J. Org. Chem. 1978, 43, 4750. (e) Cerichelli, G.; Mancini, G. Tetrahydron 1994, 50, 3797. (f) Barrett, A. G. M.; Broughton, H. B. J. Org. Chem. 1986, 51, 495. (g) Yang, W.; Luo, Y.; Liu, W.; Deng, X.; Du, X.; Li, M. J. Label Compd. Radiopharm 2011, 54, 211. (h) Satoru, M.; Koji, T.; Masahiro, M.; Masakatsu, N. Heterocycles 1992, 34, 1177. (i) see ref. 18

    Chapter IV
    [1] (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. (b) Sundberg, R. J. Pyrroles and Their Benzoderivatives: Synthesis and Applications. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1984; Vol. 4, pp 313. (c) Sundberg, R. J. In Best Synthetic Methods, Indoles; Academic Press: New York, 1996; pp 7. (d) Joule, J. A. Indole and its Derivatives. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thomas, E. J., Ed.; George Thieme Verlag: Stuttgart, Germany, 2000; Category 2, Vol. 10, Chapter 10.13. (e) Brown, R. K. In Indoles; Houlihan, W. J., Ed.; Wiley-Interscience: New York, 1972. (f) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Ress, C. W., Scriven, E. F. V., Bird, C. W., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 119. (g) Gribble, G. W. Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Ress, C. W., Scriven, E. F. V., Bird, C. W., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 207.
    [2] (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Verber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. H.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235. (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893 and references therein.
    [3] For recent reviews on the synthesis of indoles, see: (a) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045. (b) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1. (c) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491.
    [4] (a) Robinson, B. The Fischer Indole Synthesis; Wiley-Interscience: New York, 1982. (b) Indoles; Sundberg, R. J., Ed.; Academic Press: London, 1996.
    [5] Downing, R. S.; Kunkeler, P. J. in Fine chemicals through heterogenous catalysis, ed. Sheldon, R. A. and Bekkum, H. Wiley-VCH, Weinheim,New York, 2001, 178.
    [6] (a) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (b) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
    [7] For a review, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. For selected individual accounts, see: (b) Tida, H.; Yuasa, Y.; Kibayashi, C. J. Org. Chem. 1980, 45, 2938. (c) Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H. Synthesis 1990, 215. (d) Koerber-Ple, K.; Massiot, G. Synlett 1994, 759. (e) Chen, C. Y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62, 2676. (f) Yamazaki, K.; Nakamura, Y.; Kondo, Y. J. Org. Chem. 2003, 68, 6011. (g) Watanabe, T.; Arai, S.; Nishida, A. Synlett 2004, 907. (h) Nazare, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. Angew. Chem., Int. Ed. 2004, 43, 4526. (i) Jia, Y.; Zhu, J. J. Org. Chem. 2006, 71, 7826. (j) Leogane, O.; Lebel, H. Angew. Chem., Int. Ed. 2008, 47, 350.
    [8] For gold-catalyzed synthesis of indole derivatives; see selected examples: (a) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. (b) Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Romonger, F.; Oeser, T. Chem.–Eur. J. 2008, 14, 6672. (c) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546. (d) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 2284. (e) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71, 5249. (f). Murru, S.; Gallo, A. A.; Srivastava, R. ACS Catal. 2011, 1, 29.
    [9] Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241. Also see ref: 4a
    [10] (a) See Phillips, R. R. The Japp-Klingemann Reaction, Org. React. 1959, 10, 1143 and references therein. (b) Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607. (c) Przhevalski, L.; Kostromina, Y.; Grandberg, I. I. Chem. Heterocycl. Compd. (Engl. Transl.) 1988, 24, 709.
    [11] Würtz, S.; Rakshit, S.; Neumann, J. J.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.
    [12] (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689. (b) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652.
    [13] (a) Chen, C.-Y.; Lieberman, D. R.; Street, L. J.; Guiblin, A. R.; Larsen, R. D.; Verhoeven, T. R. Synth. Commun. 1996, 26, 1977. (b) Chen, C.-Y.; Lieberman, D. R.; Larsen, R. D.; Reamer, R. A.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1994, 35, 6981. (c) Humora, M. J.; Modi, S. P.; Srivastava, S. K.; Williams, A. D. U.S. Patent 5, 1996, 550, 239.
    [14] The chemistry of hydroxylamines, oximes and hydroxamic acids; Rappoport, Z., Liebman, J. F., Eds.; John Wiley and Sons: Chichester, 2009.
    [15] For a review, see: Dalpozzo, R.; Bartoli, G. Curr. Org. Chem. 2005, 9, 163
    [16] Bartoli, G.; Bosco, M.; Dalpozzo, R.; Palmieri, G.; Marcantoni, E. J. Chem. Soc. Perkin Trans. 1 1991, 2757.
    [17] (a) Ngwerume, S.; Camp, J. E. Chem. Commun. 2011, 47, 1857. (b) Ngwerume, S.; Lewis, W.; Camp, J. E. J. Org. Chem. 2013, 78, 920. (c) Pinna, G. A.; Pirisi, M. A.; Paglietti, G. J. Chem. Research (M) 1990, 2777; J. Chem. Research (S) 1990, 360. (d) Pinna, G. A.; Pirisi, M. A.; Chelucci, G.; Mussinu, J. M.; Murineddu, G.; Loriga, G.; D’Aquila, P. S.; Serra, G. Bioorg. Med. Chem. 2002, 10, 2485. (e) Ngwerume, S.; Camp, J. E. J. Org. Chem. 2010, 75, 6271.
    [18] Toyota, M.; Fukumoto, K. J. Chem. Soc. Perkin Trans. 1 1992, 547.
    [19] Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.
    [20] Coates, R. M.; Hutchins, C. W. J. Org. Chem. 1979, 44, 4742.
    [21] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
    [22] Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739.
    [23] See selected examples: (a) Han, X.; Widenhoefer, R. A. Eur. J. Org. Chem. 2006, 4555. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (c) Zhang, Z.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (d) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (e) Butler, K. L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 5175.
    [24] For such [3+2]-cycloadditions, allene substrates are required to bear either an electron-withdrawing or donating group; see selected examples: (a) Dolbier, Jr., W. R.; Wicks, G. E.; Burholder, C. R. J. Org. Chem. 1987, 52, 2196. (b) Padwa, A.; Meske, M.; Ni, Z. Tetrahedron Lett. 1993, 34, 5074. (c) Li, G.-H.; Zhou, W.; Li, X.-X.; Bi, Q.-W.; Wang, Z.; Zhao, Z.-G.; Hu, W.-X.; Chen, Z. Chem. Commun. 2013, 49, 4770. (d) Wilkens, I.; Kurling, A.; Blechert, S. Tetrahedron 1987, 43, 3237. (e). Larina, A. G; Stepakov, A. V.; Boitsov, V. M.; Molchanv, A. P.; Gurzhiy, V. V.; Starova, G. I.; Lykholay, A. N. Tetrahedron Lett. 2011, 52, 5777. (f ) Padwa, A.; Bullock, W. H.; Kline, D. N.; Perumattam, J. J. Org. Chem. 1989, 54, 2862.
    [25] Indole products might be formed from the HCl-mediated N–O bond cleavage of [3+2]-cycloadducts from nitrones and allenes, but such reactions were only operable with those allenes bearing an ester group; see ref. 24f Different products would form from those cycloadducts bearing no functional groups. This pathway is inapplicable to our system because we obtained no tractable amount of [3+2]-cycloadduct that should be stable in the presence of gold catalysts (see ref. 24c).
    [26] (a) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 7125. (b) Luo, Y.; Zhang, G.; Hwang, E. S.; Wilcoxon, T. A.; Zhang, L. Beilstein J. Org. Chem. 2011, 7, 596. (c) Ďuriš, A.; Barber, D. M.; Sanganeeb, H. J.; Dixon, D. J. Chem. Commun. 2013, 49, 2777. (d) Clavier, H.; Jeune, K. L.; Riggi, I.; Tenaglia, A.; Buono, G. Org. Lett. 2011, 13, 308. (e) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (f) See ref. 22 (g) Bordwell, F. G.; Liu, W. Z. J. Am. Chem. Soc. 1996, 118, 8777.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE