簡易檢索 / 詳目顯示

研究生: 曹沐瀠
Tsao, Mu-Ying
論文名稱: 低溫複晶矽薄膜電晶體中光汲極漏電流抑制方法之研究
Study of Photo Drain Leakage Current Suppression in LTPS TFTs
指導教授: 林崇榮
Lin, Chrong-Jung
金雅琴
King, Ya-Chin
口試委員: 施教仁
林崇榮
金雅琴
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 低溫複晶矽薄膜電晶體光漏流下閘極
外文關鍵詞: LTPS TFT, photo leakage current, bottom gate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,因為低溫複晶矽薄膜電晶體特性優異,常應用在玻璃基板上的高速電路元件。由於高遷移率和操作穩定,低溫複晶矽薄膜電晶體已被廣泛用於小型至中型的顯示面板。在面板的應用上,低溫複晶矽薄膜電晶體會曝露在相當強烈背光源從背面或周遭環境來的光。在強光的照射下,會產生極大的光漏流。高汲極光漏流不僅會增加備用時的電源,亦可能導致操作上的錯誤以及降低顯示器的明暗比。若採用一個下閘極當作遮蔽閘以消除光漏流,卻會引發drain turn on的效應,導致通道的漏流因高汲極電壓而提高。在本篇論文中提出了單閘極的不對稱和環閘結構的遮蔽閘,可以達成光遮蔽亦可以有效減輕drain turn on的效應,另外還有偶閘極和雙閘極等設計,也都可以LTPS TFT同時展現低漏流及drain turn-on的特性。


    The performance level and reliability of low temperature polycrystalline silicon thin-film transistors (LTPS TFTs) have greatly improve in recent years as a result of intensive research for the integration of high speed circuits on glass substrates (SOP). With their high mobility and operation stability, LTPS-TFTs have been used extensively in small-to-medium display panels. In display applications, LTPS TFTs are exposed to fairly strong backlight from the back plane and/or ambient light. Under illumination, photon-induced carrier generation on the poly-Si body can induce large off-state leakage current, much higher than that in a dark environment. High off-state leakage current in these TFTs not only lead to increased standby power, but also cause operation errors as well as degradations in display quality. The introduction of a bottom shielding gate is expected to eliminate photo-induced leakage effectively. However, the subsequent additional drain turn-on effect can become problematic for the TFT driving circuits. In this study, we investigate the design of the bottom shielding gate to optimize the off-state drain leakage current suppression as well as minimizing the drain turn-on effect. Asymmetric shielding gates and surround structures are found to be a promising solution to alleviate the drain turn-on problem. Dual and double gate designs are also effective and reliable methods to minimize the off-state photo leakage current without enhancing the drain turn on effect.

    摘要 i Abstract ii 誌謝 iii 內文目錄 iv 附圖目錄 v 表格目錄 viii 第一章 序論 1 1.1 研究動機 2 1.2 章節介紹 2 第二章 低溫複晶矽薄膜電晶體光漏電流之回顧 3 2.1 下閘極薄膜電晶體元件結構對於光漏電流的影響 3 2.1.1 非晶矽薄膜電晶體 3 2.1.2 下閘極複晶矽薄膜電晶體 4 2.2 上閘極複晶矽薄膜電晶體元件之光漏電流的特性 5 2.3 降低複晶矽薄膜電晶體光漏電流的方法 6 2.4 小結 7 第三章 低溫複晶矽薄膜電晶體中光漏電流來源討論 15 3.1 低溫複晶矽薄膜電晶體製作流程 15 3.2 光漏電流來源 16 3.3 dran turn on effect的分析 18 3.4 單閘極與偶閘極N型複晶矽薄膜電晶體的特性分析 19 3.5 小結 19 第四章 低溫N型複晶矽薄膜電晶體光漏電流抑制方法實驗量測討論 37 4.1 不對稱的遮蔽閘 37 4.1.1 單閘極N型複晶矽薄膜電晶體 38 4.1.2 偶閘極複晶矽薄膜電晶體 38 4.2 對稱的遮蔽閘 39 4.2.1 不同元件大小的比較 39 4.2.2 單閘極與偶閘極薄膜電晶體的比較 40 4.2.3 不同遮蔽閘材質的比較 40 4.2.4 不同有效絕緣層厚度的比較 41 4.3 環閘形式的遮閉閘 41 4.4 雙閘極元件的特性 42 4.5 小結 43 第五章 總結 58 參考目錄 59

    [1] S.D. Brotherton, “Polystalline silicon thin film transistors,” Semicond. Sci. Technol., vol.10, NO.6, pp. 721-738, JUNE 1995.
    [2] Sang-Hoon Jung, Woo-Jin Nam, and Min-Koo Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol.25., NO.10., Oct. 2004, pp. 690-692.
    [3] Jung-Hoon Oh, Hoon-Ju Chung, Nae-In Lee, and Chul-Hi Han, “A high-endurance low-temperature polysilicon thin-film transistor EEPROM cell,” IEEE Electron Device Lett.,vol.21.,NO.6.,JUNE 2000, pp. 304.
    [4] Ayres, J.R., Brotherton, S.D., Clarence, I.R., Dobson, P.J., “Photocurrents in poly-Si TFTs,” IEE Proc.-Circuits, Devices Syst., vol. 141, NO. 1, Feb 1994, pp. 27-32.
    [5] F. B. Ellis, Jr., R. G. Gordon, W. Paul and B. G. Yacobi, J. Appl. Phys. 55, 4309 (1984).
    [6] S. Martin, J. Kanicki, N. Szydle, A. Rolland, Active Matrix Liquid Crystal Display'97 (1997) 211.
    [7] J. H. Choi, C. S. Kim, B. C. Lim, and J. Jang, “A novel thin film transistor using double amorphous silicon active layer,” IEEE Trans. Electron Devices 45 (1998) 2074.
    [8] K. S. Lee, J. H. Choi, S. K. Kim, H. B. Jeon, and J. Jang, “Low off-state leakage current thin-film transistor using Cl incorporated hydrogenated amorphous silicon,” Appl. Phys. Lett., vol. 69, pp. 2403–2405, 1996.
    [9] S. K. Kim, K. S. Lee, J. H. Choi, C. S. Kim, and J. Jang, “High performance a-Si : H(: Cl) TFT,” in Proc. Electrochem. Soc., 1996, vol. 96–23, pp. 138–145.
    [10] Y. J. Choi, B. C. Lim, I. K. Woo, J. I. Ryu, and J. Jan, “Low photo-leakage current amorphous silicon thin fillm transistor with a thin active layer,” J. Non-Cryst. Solids 266 (2000) 1299.
    [11] D.B. Thomasson, T.N. Jackson, IEEE Electron Device Lett. 18 (1997) 397.
    [12] J.E. Lan, T.K. Chou, C.S. Chiang, J. Kanicki, Mater. Res. Soc. Symp. Proc. 471 (1997) 27.
    [13] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, IDRC ’94 Digest, International Display Research Conference, CA, 1994 (unpublished), p. 369.
    [14] D. N. Yaung, Y. K. Fang, C. H. Chen , C. C. Hung, F. C. Tsao, S. G. Wuu, and M. S. Liang, “To suppress photoexcited current of hydrogenated polysilicon TFTs with low temperature oxidation of polychannel,” IEEE ELECTRON DEVICE LETTERS. VOL. 22, NO. 1, JANUARY 2001.
    [15] M. Sasaki and T. kimura, “The impact of oxidation of channel poly-Si on the trap-density of submicorn bottom-gate TFT’s,” IEEE Electron Device Lett., vol. 15, pp. 1–3, Jan. 1994.
    [16] K. Ono, T. Aoyama, N. Konishi, and K. Miyata, “Analysis of current-voltage characteristics of low-temperature-processed polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 792–802, Apr. 1992.
    [17] H. Hayashi, T. Noguchi, and T. Oshima, “Polysilicon super-thin-film transistor (SFT),” Jpn. J. Appl. Phys., vol. 23, pp. 819–820, 1984.
    [18] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysilicon thin film transistors,” IEEE Electron Device Lett., vol. 15, pp. 274–276, Aug. 1994.
    [19] K. Kobayashi, and Y. Niwano, “Photo-leakage current of poly-Si thin film transistors with offset and lightly doped 汲極 structure,” Jpn. J. Appl. Phys. Vol. 38(1999) pp.5757-5761.
    [20] H. Y. Lu, T. C. Chang, P. T. Liu, H. W. Li, C. W. Hu, K. C. Lin, C. C. Wang, Y. H. Tai, and S. Chi, “Reduction of photoleakage current in polycrystalline silicon thin-film transistor using NH3 plasma treatment on buffer layer,” Appl. Phys. Lett. 92, 153507 (2008).
    [21] K. Suzuki, F. Takeuchi, Y. Ebiko, M. Chida, and N. Sasaki, Tech. Dig. -Int. Electron Devices Meet. 2004, 785.
    [22] Te-Yu Lee, Chih-Chieh Chiu, Yu-Chung Liu, Ya-Chin King, and Chrong-Jung Lin, “A new embedded one-time-programmable MNOS memory fully compatible to LTPS fabrication for system-on-panel (SOP) applications,” IEEE ELECTRON DEVICE LETTERS 29 (8) (2008).
    [23] J.R. Ayres, S.D. Brotherton, I.R. Clarence, P.J. Dobson, “Photocurrents in poly-Si TFTs,” IEE Proc.-Circuits, Devices Syst., vol. 141, NO. 1, Feb 1994, pp. 27-32.
    [24] T. Sameshima, S. Usui, and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Letters., vol.EDL-7, No.5, 1986, pp. 276.
    [25] Min-Koo Han, and In Hyuk Song, “Invited Paper: Low Temperature Poly-Si TFTs with Advanced Device Structures,” SID Symposium Digest of Technical Papers, vol. 34, no.1, May 2003, pp.1490-1493.
    [26] H. Y. Lu, T. C. Chang, P. T. Liu, H. W. Li, C. W. Hu, K. C. Lin, Y. H. Tai, Y. H. Tai, and S. Chi, “Elimination of photoleakage current in poly-Si TFT using a metal-shielding structure,” Electrochemical and Solid-State Letters, 11(5) J34-J36 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE