簡易檢索 / 詳目顯示

研究生: 林楷竣
Lin, Kai-Chun
論文名稱: 新型高頻邏輯製程相容垂直雙極性電晶體
A Novel High Frequency Vertical Bipolar Junction Transistor with CMOS Logic Compatible Process
指導教授: 林崇榮
Lin, Chrong-Jung
金雅琴
King, Ya-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 雙極性電晶體邏輯製程相容高頻低雜訊垂直式
外文關鍵詞: BJT, CMOS, Vertical
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近年來,越來越多關於在互補式金氧半電晶體(CMOS)邏輯製程上製作雙極性電晶體(BJT)的研究被發表。互補式金氧半電晶體有製造密度高,省電的優點,而雙極性電晶體則可以提供高速,高電流驅動力以及低雜訊的能力,但是相對的需要較大的耗電。 在同一個晶片設計上結合金氧半電晶體和雙極性電晶體兩種技術,電路設計工程師可以在省電和高效能之間作最佳化的選擇,讓晶片設計的效能超過只用單一種電晶體的設計。大部份現存的互補式金氧半電晶體製程(BiCMOS)是使用高效能的客製化垂直雙極性電晶體。但是金氧半電晶體和雙極性電晶體在製作上的不相容,會使得製程變的昂貴且複雜。
    在本論文中,提出一個可以適用於射頻、高速數位/類比電路設計的低成本、低雜訊、高增益、高頻率,且完全不需要額外光罩的新型邏輯相容垂直雙極性電晶體(logic compatible vertical bipolar junction transistor),並且其高頻、高增益特性,已經在台積電0.18微米邏輯製程上被驗證。
    論文中提出的新型邏輯相容垂直雙極性電晶體,有主要兩種結構,分別為RPO對準與閘極自我對準結構。閘極自我對準結構,類似兩個並聯的N型或是P型金氧半電晶體,利用源極和集極的自我對準結構來區隔射極(Emitter)以及基極(Base)。而RPO對準結構則類似閘極自我對準結構去掉閘極。兩種結構的射極和基極都是利用反態LDD和Pocket去製作。
    RPO對準結構的截止頻率可以達到17.5GHZ,最大功率頻率15.5GHZ,電流增益超過60。而閘極自我對準結構,在90nm的模擬當中,更可以達到45GHZ,電流增益超過70。更多相關的電晶體電性將會在論文中討論。


    Abstract
    Recently there are a lot of studies and researches in bipolar junction transistor (BJT) technology with fully CMOS logic compatible process. CMOS technology is known applied for low standby power dissipation, high packing density, and easy processes. However, bipolar junction transistor (BJT) technology is able to provide higher switching speed, current drivability, and low-noise performance, in spite of consuming more power. To combine the two technologies is the superior solution for the IC design, i.e. the designers can therefore obtain the lower power dissipation and noise level but increase the circuit speed and performance in some cases. Currently, most BiCMOS (BJT plus CMOS) technologies must utilize high performance but complicate Vertical BJTs in CMOS process platform. This kind of combination will produce a lot of extra masking steps and very complicate process flow, the benefit of CMOS and BJT will be significantly declined owing to high cost and low yield concerns.
    A new high frequency logic compatible Vertical Bipolar Junction Transistor without any extra masks has been proposed in this paper. The new structure has low cost and CMOS logic compatible properties, and still remains the advantages of BJT in high switching speed, low noise, and high gain. The device and its high frequency measurement patterns have been fabricated and demonstrated by TSMC 0.18um logic process and fully characterized by this study.
    The new logic compatible vertical bipolar junction transistors include two kinds of the layout structures: RPO Align (RPOA) and Gate Self-Align (GSA) structure. The gate self-align structure consists of two parallel poly-Si gates for separating emitter and base regions, the following self-aligned implantation can easily form the emitter, base, and collectors without additional masks or process steps. A RPO align structure is similar to the previous Gate self-align structure but use RPO layer instead of poly gate formation. The structure is not suitable for self-aligned implantation for emitter and base formation but use the anti-LDD and anti-pocket implantations to define the emitter and base regions.
    The RPO Align BJT (RA-BJT) can achieve a current gain over 60 and 17.5/15.5 GHz for the fT/fmax. Moreover, the Gate Self-Aligned BJT (GSA-BJT) also can achieve a high current gain over 70 and 45 GHz for the fT/fmax according to the simulation of TSMC’s 90nm CMOS logic process. More comprehensive characteristics will be exhibited and in the papers.

    目錄 第一章 導論 10 1.0 前言 10 1.2 論文綱要 11 第二章 射頻與BICMOS電路及雙極性電晶體技術回顧 12 2.1 雙極性電晶體在高頻射頻電路與BICMOS電路的應用 12 2.2 雙極性接面電晶體(BJT)元件特性 13 2.3 高頻雙極性電晶體技術與演進 14 2.4 邏輯製程相容雙極性電晶體技術與演進 15 第三章 新型邏輯製程相容垂直雙極性電晶體元件之設計與製程 22 3.1 CMOS邏輯製程與傳統雙極性電晶體製程簡介 22 3.2 新型邏輯製程相容雙極性電晶體元件結構與製程 23 3.2.1 元件設計概念 23 3.2.2 RPO對準垂直雙極性電晶體 24 3.2.3 閘極對準垂直雙極性電晶體 25 3.2.4 新型邏輯製程相容垂直雙極性電晶體元件優點與特色 26 3.3 元件、測試晶片佈局與影響因素分析 28 第四章 新型邏輯製程相容垂直雙極性電晶體元件特性量測 43 4.1 新型雙極性電晶體直流特性及量測 43 4.1.1 雙極性電晶體操作模式與電流增益簡介 43 4.1.2 電晶體直流非理想現象 45 4.1.3 Gummel Plot 46 4.1.4 共射極電壓-電流特性曲線 47 4.1.5 直流特性量測方法 47 4.1.6 GUMMEL PLOT 特性曲線圖與元件增益 47 4.1.7 元件共射極直流特性與崩潰電壓 50 4.1.8 元件電流驅動能力與面積 50 4.2 新型雙極性電晶體高頻響應特性及量測 51 4.2.1 雙極性電晶體高頻響應特性簡介 51 4.2.2 高頻響應特性量測方法 54 4.2.3 截止頻率FT與最大共振頻率Fmax 55 4.3 結論 56 第五章 特性討論與分析 66 5.1 B-E非線性現象分析與等效模型模擬 66 5.2 非線性現象分析改善方法 68 5.3 基極摻雜濃度對元件直流特性的影響 68 5.3 基極參雜濃度對元件高頻特性的影響 70 5.4 改善基極摻雜濃度不均問題 70 5.5 微縮特性分析與模擬 71 5.6 元件抗雜訊能力 72 5.7 與其他邏輯製程相容雙極性電晶體技術比較 73 5.8 結論 74 第六章 結論與未來展望 88 6.1 新型邏輯製程相容垂直雙極性電晶體元件優勢與其應用 88 6.2 結構改進與變型 88 6.3 結論與未來展望 89 參考資料 90

    [1] Tino Copani, Santo A. Smerzi, Giovanni Girlando, and Giuseppe Palmisano, “A 12-GHz Silicon Bipolar Dual-Conversion Receiver for Digital Satellite Applications”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, 2005

    [2] John D. Cressler, Guogu Niu, Silicon-Germanium Heterojunction Bipolar Transistors. Boston, MA: Artech House, 2003.

    [3] HUN CHANG LIN, ”Complementary MOS-Bipolar Transistor Structure”, IEEE TRANSACTIONS ON ELECTON DEVICE, VOL. ED-16, NO.11, NOV. 1969

    [4] Sophie Verdonckt-Vandebroek, “High-Gain Lateral p-n-p Bipolar Action in a p-MOSFET Structure”, IEEE ELECTRON DEVlCE LETTERS. VOL. 13, NO. 6, JUNE 1992

    [5] Shuo-Mao Chen, Yean-Kuen Fang, Wen-Kuan Yeh, I.C. Lee, Yen-Ting Chiang, “A high current gain gate-controlled lateral bipolar junction transistor with 90 nm CMOS technology for future RF SoC applications”, Solid-State Electronics 52 (2008) 1140–1144

    [6] A. Tamba. T. Someya. T. Sakagami', N. Akiyama and Y. Kobayashi, ”A NOVEL CMOS--COMPATIBLE LATERAL BIPOLAR TRANSISTOR FOR HIGH-SPEED BICMOS LSI”, IEEE IEDM 1990

    [7] Jedon Kim, Hansu Oh, Chulho Chung, Joo-Hyun jeong, Hyunwoo Lee, Seok-Hee Hwang, In-Chul Hwang, Young-Jin Kim, Kyushik Hong, Eunseung Jung, Kwang-Pyuk Suh, ”High Performance NPN BJTs in Standard CMOS Process for GSM Transceiver and DVB-H Tuner”, Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE

    [8] Donald A.Neamen, “Semiconductor Physics & Devices”, Third Edition, (半導體物理及元件,台商圖書 譯: 李世鴻)

    [9] E. O. Johnson, “Physical limitation on frequency and power parameters of ransistors,” RCA Rev., p. 163, 1965.

    [10] 吳昭羲,“平臺式矽鍺異質接面雙載子電晶體研製與分析”, 碩士論文, 中央大學 2005

    [11] 范振中, “磷化銦鎵/砷化鎵異質接面雙極性電晶體之研製及其集極調變對元件特性的影響” 碩士論文,國立中央大學,2000

    [12] 蔡亭林, “矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析” 碩士論文, 國立中央大學, 2003

    [13] “利用減壓CVD成長高性能之SiGe pHMOS”, 半導體科技No.45

    [14] I.-S. M. Sun, W. T. Ng, H. Mochizuki, K. Kanekiyo, T. Kobayashi, M. Toita, H. Imai, A. Ishikawa, K. Takasuka, “Novel ultra-low power RF Lateral BJT on SOI-CMOS compatible substrate for SoC Applications”, IEEE International SOI Conference 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE