研究生: |
周定芳 Chou, Ting-Fang |
---|---|
論文名稱: |
人類粒線體第一蛋白質複合體中NDUFS7次單元擁有粒線體與細胞核兩種不同的分佈 Human mitochondrial complex I NDUFS7 subunit has a dual distribution both in mitochondria and nuclei |
指導教授: |
高茂傑
Kao, Mou-Chieh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 粒線體 、標的訊號 、免疫螢光染色 |
外文關鍵詞: | mitochondria, signal peptide, immnofluorescence |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類粒線體第一蛋白質複合體中的NDUFS7(NADH dehydrogenase ubiquinone Fe-S protein 7)在演化上具有高度保留的特性,並在氧化磷酸化系統中(oxidative phosphorylation system, OXPHOS)扮演重要的角色。NDUFS7含有一個[4Fe-4S]的鐵硫中心(iron-sulfur cluster N2, tetranuclear),其功能為擔任第一蛋白質複合體中電子傳遞的最後電子接受者。於臨床研究中發現三種NDUFS7的突變與Leigh症候群(Leigh syndrome, LS)有關。NDUFS7是由細胞核基因組所轉錄,於細胞質轉譯成蛋白質後再進入粒線體,並組裝於第一蛋白質複合體的親水區塊。在T-REx-293細胞內,利用核醣核酸干擾技術(RNAi)來抑制NDUFS7的表現,而NDUFS7表現下降會導致細胞在含有乳糖的培養基中生長緩慢以及細胞中H2O2上升等表型。此結果顯示NDUFS7在粒線體能量代謝及細胞的生長扮演重要角色。多數表現在粒線體基質的蛋白質是在細胞質中合成,且藉由粒線體膜上的TIM/TOM蛋白質複合體辨認本身攜帶的粒線體標的訊號(mitochondrial targeting signal, MTS)來運輸。經預測軟體分析,NDUFS7的N端前29個胺基酸可能為MTS的所在。在本次實驗中,我們建構出刪除不同片段大小的NDUFS7與綠螢光蛋白(EGFP)融合的質體,來觀察其在T-REx-293細胞內的表現位置。 我們發現NDUFS7前60個胺基酸的片段即具有良好運送EGFP至粒線體的能力,顯示MTS位於此蛋白的N端。 接著我們藉由定點突變的方法來研究鹼性與疏水性胺基酸對於此MTS的功能影響,發現這兩類胺基酸對於NDUFS7 MTS的運輸能力皆很重要。另外,我們也定義出NDUFS7的C端區域含有一段有效的細胞核輸入訊號(nuclear localization signal, NLS)以及細胞核運出訊號(nuclear export signal, NES)。由這些結果可證明NDUFS7在細胞中擁有粒線體與細胞核兩種不同的分佈。
Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7), one of the most conserved core subunits of mitochondrial complex I, plays an important role in the oxidative phosphorylation system (OXPHOS). This protein binds one iron-sulfur cluster N2 (tetranuclear) which is the terminal redox center in the electron transport process of complex I. Three types of mutations in this subunit have been associated with Leigh syndrome (LS). NDUFS7 protein is encoded by nuclear genome and incorporated in the peripheral segment of complex I facing the mitochondrial matrix. The NDUFS7 was suppressed in human T-REx-293 cells using the RNA interference (RNAi) technology. The reduction in the NDUFS7 expression caused a slow growth rate in galactose containing medium and increased H2O2 generation. These results indicated that NDUFS7 may play an important role in cell energy production and survival. Most mitochondrial matrix proteins are synthesized in the cytoplasm and imported into mitochondria by TIM/TOM complexes recognizing the mitochondrial targeting sequences (MTSs). Using predication softwares, the N-terminal fragment was suggested to be the MTS of NDUFS7. In this study, we fused NDUFS7 containing N-terminal deletions, C-terminal deletions or different portions of the protein to enhanced green fluorescent protein (EGFP), and used these obtained constructs to study their intracellular localization in T-REx-293 cells. We found that the chimeric NDUFS71-60-EGFP was colocalized with mitochondria, demonstrating that this N-terminal fragment contained an effective MTS. We then used site-directed mutagenesis analyses to study the role of basic and hydrophobic residues in the first 60 amino acids of NDUFS7. These results suggested that both two types of amino acids are important for the mitochondrial import of the MTS in NDUFS7. In addition, we also demonstrated that there is a nuclear localization signal (NLS) and a nuclear export signal (NES) located in the C-terminus of NDUFS7. These results suggested that NDUFS7 has a dual distribution both in mitochondria and nuclei.
1.Scheffler IE: Mitochondria make a come back. Adv Drug Deliv Rev 2001, 49(1-2):3-26.
2.Taylor RW, Turnbull DM: Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005, 6(5):389-402.
3.Taanman JW: The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999, 1410(2):103-123.
4.Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA: Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 2006, 29(4):499-515.
5.Ohnishi T: Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1998, 1364(2):186-206.
6.Hyslop SJ, Duncan AM, Pitkanen S, Robinson BH: Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics 1996, 37(3):375-380.
7.Leigh D: Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 1951, 14(3):216-221.
8.Dahl HH: Getting to the nucleus of mitochondrial disorders: identification of respiratory chain-enzyme genes causing Leigh syndrome. Am J Hum Genet 1998, 63(6):1594-1597.
9.Smeitink J, van den Heuvel L: Human mitochondrial complex I in health and disease. Am J Hum Genet 1999, 64(6):1505-1510.
10.Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, Rubio Gozalbo ME, Budde SM, Mariman EC, Wijburg FA, Barth PG et al: Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 1999, 45(6):787-790.
11.Lebon S, Rodriguez D, Bridoux D, Zerrad A, Rotig A, Munnich A, Legrand A, Slama A: A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab 2007, 90(4):379-382.
12.Lebon S, Minai L, Chretien D, Corcos J, Serre V, Kadhom N, Steffann J, Pauchard JY, Munnich A, Bonnefont JP et al: A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 2007, 92(1-2):104-108.
13.Ahlers PM, Garofano A, Kerscher SJ, Brandt U: Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochim Biophys Acta 2000, 1459(2-3):258-265.
14.Wang DC, Meinhardt SW, Sackmann U, Weiss H, Ohnishi T: The iron-sulfur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa. Eur J Biochem 1991, 197(1):257-264.
15.Duarte M, Populo H, Videira A, Friedrich T, Schulte U: Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis. Biochem J 2002, 364(Pt 3):833-839.
16.Friedrich T, Steinmuller K, Weiss H: The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 1995, 367(2):107-111.
17.Gakh O, Cavadini P, Isaya G: Mitochondrial processing peptidases. Biochim Biophys Acta 2002, 1592(1):63-77.
18.Neupert W, Herrmann JM: Translocation of proteins into mitochondria. Annu Rev Biochem 2007, 76:723-749.
19.Pfanner N, Geissler A: Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2001, 2(5):339-349.
20.Mukhopadhyay A, Yang CS, Wei B, Weiner H: Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem 2007, 282(51):37266-37275.
21.Lee CM, Sedman J, Neupert W, Stuart RA: The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 1999, 274(30):20937-20942.
22.Roise D, Theiler F, Horvath SJ, Tomich JM, Richards JH, Allison DS, Schatz G: Amphiphilicity is essential for mitochondrial presequence function. EMBO J 1988, 7(3):649-653.
23.Allison DS, Schatz G: Artificial mitochondrial presequences. Proc Natl Acad Sci U S A 1986, 83(23):9011-9015.
24.Folsch H, Gaume B, Brunner M, Neupert W, Stuart RA: C- to N-terminal translocation of preproteins into mitochondria. EMBO J 1998, 17(22):6508-6515.
25.Arizmendi JM, Runswick MJ, Skehel JM, Walker JE: NADH: ubiquinone oxidoreductase from bovine heart mitochondria. A fourth nuclear encoded subunit with a homologue encoded in chloroplast genomes. FEBS Lett 1992, 301(3):237-242.
26.Duarte M, Finel M, Videira A: Primary structure of a ferredoxin-like iron-sulfur subunit of complex I from Neurospora crassa. Biochim Biophys Acta 1996, 1275(3):151-153.
27.Schmidt-Zachmann MS, Nigg EA: Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 1993, 105 ( Pt 3):799-806.
28.Nigg EA: Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 1997, 386(6627):779-787.
29.Kalderon D, Roberts BL, Richardson WD, Smith AE: A short amino acid sequence able to specify nuclear location. Cell 1984, 39(3 Pt 2):499-509.
30.Kalderon D, Smith AE: In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 1984, 139(1):109-137.
31.Lanford RE, Butel JS: Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 1984, 37(3):801-813.
32.Jans DA, Xiao CY, Lam MH: Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 2000, 22(6):532-544.
33.Robbins J, Dilworth SM, Laskey RA, Dingwall C: Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 1991, 64(3):615-623.
34.Hall MN, Hereford L, Herskowitz I: Targeting of E. coli beta-galactosidase to the nucleus in yeast. Cell 1984, 36(4):1057-1065.
35.Hicks GR, Raikhel NV: Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol 1995, 11:155-188.
36.Chan CK, Jans DA: Using nuclear targeting signals to enhance non-viral gene transfer. Immunol Cell Biol 2002, 80(2):119-130.
37.Ketha KM, Atreya CD: Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of influenza A virus strain. BMC Cell Biol 2008, 9:22.
38.Sorokin AV, Kim ER, Ovchinnikov LP: Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 2007, 72(13):1439-1457.
39.Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R: The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995, 82(3):475-483.
40.la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S: NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 2003, 31(1):393-396.
41.Wen W, Taylor SS, Meinkoth JL: The expression and intracellular distribution of the heat-stable protein kinase inhibitor is cell cycle regulated. J Biol Chem 1995, 270(5):2041-2046.
42.Johnson AW, Lund E, Dahlberg J: Nuclear export of ribosomal subunits. Trends Biochem Sci 2002, 27(11):580-585.
43.Engel K, Kotlyarov A, Gaestel M: Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 1998, 17(12):3363-3371.
44.DeVit MJ, Johnston M: The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 1999, 9(21):1231-1241.
45.Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK: The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 1998, 396(6710):482-486.
46.Kaffman A, O'Shea EK: Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol 1999, 15:291-339.
47.Freemantle SJ, Taylor SM, Krystal G, Moran RG: Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem 1995, 270(16):9579-9584.
48.Otterlei M, Haug T, Nagelhus TA, Slupphaug G, Lindmo T, Krokan HE: Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res 1998, 26(20):4611-4617.
49.Land T, Rouault TA: Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 1998, 2(6):807-815.
50.Lutsenko S, Cooper MJ: Localization of the Wilson's disease protein product to mitochondria. Proc Natl Acad Sci U S A 1998, 95(11):6004-6009.
51.Ashmarina LI, Pshezhetsky AV, Branda SS, Isaya G, Mitchell GA: 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria. J Lipid Res 1999, 40(1):70-75.
52.Amery L, Fransen M, De Nys K, Mannaerts GP, Van Veldhoven PP: Mitochondrial and peroxisomal targeting of 2-methylacyl-CoA racemase in humans. J Lipid Res 2000, 41(11):1752-1759.
53.Ramotar D, Kim C, Lillis R, Demple B: Intracellular localization of the Apn1 DNA repair enzyme of Saccharomyces cerevisiae. Nuclear transport signals and biological role. J Biol Chem 1993, 268(27):20533-20539.
54.Chew O, Rudhe C, Glaser E, Whelan J: Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 2003, 53(3):341-356.
55.Bradbury MW, Berk PD: Mitochondrial aspartate aminotransferase: direction of a single protein with two distinct functions to two subcellular sites does not require alternative splicing of the mRNA. Biochem J 2000, 345 Pt 3:423-427.
56.Prokisch H, Scharfe C, Camp DG, 2nd, Xiao W, David L, Andreoli C, Monroe ME, Moore RJ, Gritsenko MA, Kozany C et al: Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2004, 2(6):e160.
57.Tolkunova E, Park H, Xia J, King MP, Davidson E: The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 2000, 275(45):35063-35069.
58.Tsuchimoto D, Sakai Y, Sakumi K, Nishioka K, Sasaki M, Fujiwara T, Nakabeppu Y: Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res 2001, 29(11):2349-2360.
59.Mueller JC, Andreoli C, Prokisch H, Meitinger T: Mechanisms for multiple intracellular localization of human mitochondrial proteins. Mitochondrion 2004, 3(6):315-325.
60.Karniely S, Pines O: Single translation--dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 2005, 6(5):420-425.
61.Danpure CJ: How can the products of a single gene be localized to more than one intracellular compartment? Trends Cell Biol 1995, 5(6):230-238.
62.Regev-Rudzki N, Pines O: Eclipsed distribution: a phenomenon of dual targeting of protein and its significance. Bioessays 2007, 29(8):772-782.
63.Seibel NM, Eljouni J, Nalaskowski MM, Hampe W: Nuclear localization of enhanced green fluorescent protein homomultimers. Anal Biochem 2007, 368(1):95-99.
64.Johnson ES: Protein modification by SUMO. Annu Rev Biochem 2004, 73:355-382.
65.Wilson VG, Rangasamy D: Intracellular targeting of proteins by sumoylation. Exp Cell Res 2001, 271(1):57-65.
66.Du JX, Bialkowska AB, McConnell BB, Yang VW: SUMOylation regulates nuclear localization of Kruppel-like factor 5. J Biol Chem 2008, 283(46):31991-32002.