簡易檢索 / 詳目顯示

研究生: 陳彥君
Chen, Yen-Chun
論文名稱: 以雙(叔丁基胺)雙(二甲基胺)鎢與硫化氫作為原子層沉積法之前驅物製備硫化鎢的反應機構研究
A Proposed Mechanism of WS2 Formation by Atomic Layer Deposition Using Bis(tert-butylimino)bis(dimethylamino)tungsten and H2S
指導教授: 李志浩
Lee, Chih-Hao
口試委員: 楊耀文
Yang, Yaw-Wen
李信義
Lee, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 89
中文關鍵詞: 過渡金屬硫族化合物二維材料雙(叔丁基胺)雙(二甲基胺)鎢原子層沉積表面反應硫化鎢烷基胺
外文關鍵詞: bis(tert-butylimino)bis(dimethylamino)tungsten (BTBMW), surface activation, tungsten alkylamide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討以雙(叔丁基胺)雙(二甲基胺)鎢與硫化氫作為原子層沉積法之前驅物製備硫化鎢的可行性與其反應機構,進而發現該反應同時含有化學氣相沉積的成份特性。此外,生成之硫化鎢的物理與化學性質由高解析度穿透式電子顯微鏡、X光繞射與X光光電子能譜探究。經文獻回顧與數據分析,本文推定,硫化氫對鎢錯合物的硫化反應為速率決定步驟、配位基的移除由高溫反應過程中的分子脫附及與硫化氫的反應共同促成,且氧化反應與硫化反應共同競爭鎢錯合物前驅物。此反應機構能成功解釋何以反應由高溫降至低溫(由300至250°C)時,氧化鎢的生成量反而速增,而在較高溫反應時則可輕易得到高純度的硫化鎢。
    原子層沉積製程文獻中以烷基胺金屬配位錯合物為前驅物製備金屬硫化物者甚少,乃因烷基胺與氮的高親和度使其易生成氮化物之故。烷基胺因此最常用在製備金屬氧化物與氮化物上。本研究展示,雙(叔丁基胺)雙(二甲基胺)鎢作為原子層沉積前驅物能合成高純度硫化鎢,氮汙染量甚低,其原因不僅出於烷基胺錯合物在高溫反應中的降解與脫附,也應歸功於硫化氫對烷基胺配位基的移除作用。因此雙(叔丁基胺)雙(二甲基胺)鎢乃為一合適之硫化鎢合成前驅物。本文在探討前驅物化學反應機制外,亦為原本為數不多的硫化鎢原子層沉積法拓展了新的合適前驅物選擇。


    A mechanism of the formation of WS2 from sequential reaction of bis(tert-butylimino)bis(dimethylamino)tungsten (BTBMW) and H2S is proposed and attempted to justify by XPS and Raman scattering data. Three key features of the reactions are justified to be present and support the mechanism: sulfurization being the rate-limiting step, ligand removal facilitated by H2S and oxidation competition with sulfurization for BTBMW. Our model explains why purity of WS2 is highly dependent on the reaction temperature.
    This study introduced a novel ALD method with CVD component to manufacture high purity, 2D-structured WS2 with bis(tert-butylimino)bis(dimethylamino)tungsten. This is peculiar, as metal alkylamides are used mostly for synthesis of nitrides and oxides due to the concern of nitrogen contamination. We demonstrated that little to no residue consisting of nitrogen was detected in the as-prepared WS2. Therefore, from an engineering perspective, a new option for synthesizing high purity WS2 films in an ALD-like feature is introduced. This method also benefits from its potential for depositing high aspect-ratio material in a highly thickness-controlled manner.

    TABLE OF CONTENTS LIST OF ABBREVIATIONS 1 Introduction ............................................................................................................................. 1 2 Literature Review .................................................................................................................... 4 2.1 ALD process and the search for a new WS2 precursor .................................................. 4 2.2 Metal alkylamides as ALD/CVD precursors ................................................................... 7 2.3 Decomposition mechanism of BTBTT and BTBDT / Adsorption of BTBMW on Si(100) .................................................................................................................................. 9 2.4 Manufacture of WS2 via CVD/ALD................................................................................11 2.4.1 WO3 sulfurization ..................................................................................................11 2.4.2 Direct ALD process............................................................................................... 14 3 Experimental .......................................................................................................................... 17 3.1 Materials..................................................................................................................... 17 3.2 Standard atomic layer deposition ............................................................................ 17 3.3 Characterization methods......................................................................................... 20 4. Results and Discussion .............................................................................................................. 22 4.1 Chemistry of WS2 formation process in ALD ............................................................... 22 4.1.1 Proposed mechanism ............................................................................................ 22 4.1.2 ALD reaction product........................................................................................... 25 4.1.2.1 WS2: the dominant reaction product ....................................................... 25 4.1.2.2 Detailed XPS scan ...................................................................................... 26 4.1.2.3 EDXS purity examination ......................................................................... 29 4.1.3 Impurity elimination by desorption and sulfurization ...................................... 31 4.1.3.1 Species identification at lower temperature regime, 100°C, 125°C and 200°C................................................................................................................ 31 4.1.3.2 Species identification at higher temperature regime, 250°C, 275°C and 300°C .................................................................................................... 32 4.1.3.3 XPS survey scans........................................................................................ 33 4.1.3.4 Ligand removal process ............................................................................. 35 4.1.3.5 Reduction of W(VI) amino complex ......................................................... 40 4.1.3.6 Sulfurization: the rate-limiting step ......................................................... 42 4.1.3.7 Oxidation and competition with sulfurization......................................... 43 4.1.3.7.1 Antagonism ...................................................................................... 43 4.1.3.7.2 H2O and WO3 in O 1s spectra ........................................................ 45 4.1.4 Raman spectroscopy ............................................................................................. 47 4.1.4.1 WS2 identification by Raman spectroscopy ............................................. 47 4.1.4.2 WS2 formation at 300°C ............................................................................ 48 4.1.4.3 Substrate specific area effect on the formation of WO3 ......................... 49 4.1.4.4 WO3 vibrational frequency suppression by moisture residue and amorphous WO3 ..................................................................................................... 50 4.1.4.4.1 WS2 / f-CNTs / Al substrate system................................................ 51 4.1.4.4.2 WS2 / Si substrate system ............................................................... 55 4.1.4.5 Summary of Raman scattering analysis .................................................. 56 4.2 Development of a novel WS2 ALD method.................................................................... 57 4.2.1 ALD window.......................................................................................................... 57 4.2.2 Saturation .............................................................................................................. 59 4.3 Morphology of as-prepared WS2 / f-CNTs .................................................................... 62 4.3.1 HRTEM image of WS2 / f-CNTs.......................................................................... 62 4.3.1.1 50 ALD cycle .............................................................................................. 62 4.3.1.2 200 ALD cycle ............................................................................................ 64 4.3.1.3 350 cycle...................................................................................................... 68 4.3.2 Quantitative XRD analysis of WS2 / f-CNTs ...................................................... 73 4.4 Film growth and growth rate of WS2............................................................................. 77 4.4.1 Film growth rate ................................................................................................... 77 4.4.2 Dead layer.............................................................................................................. 79 4.4.3 AFM image ............................................................................................................ 81 5 Conclusion ................................................................................................................................... 83 Note ................................................................................................................................................. 85 REFERENCES .............................................................................................................................. 86

    1. M. M. Maye, "Volatile Metal Alkylamides Serve as Precursors for Vapor Deposition
    of High-Dielectric-Constant Gate Insulator Materials". MRS Bulletin 26(9) (2011),
    660-661.
    2. J.-W. Lim, H.-S. Park, and S.-W. Kang, "Analysis of a transient region during the
    initial stage of atomic layer deposition". Journal of Applied Physics 88(11) (2000),
    6327-6331.
    3. J.-W. Lim, H.-S. Park, and S.-W. Kang, "Kinetic modeling of film growth rate in
    atomic layer deposition". Journal of The Electrochemical Society 148(6) (2001),
    C403-C408.
    4. R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the
    trimethylaluminum/water process". Journal of Applied Physics 97(12) (2005).
    5. J. A. T. Suntola, "U.S. Patent US 4 058 430". (1977).
    6. M. Putkonen, Precursors for ALD Processes, in Atomic Layer Deposition of
    Nanostructured Materials. 2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 41-59.
    7. A. C. Jones and M. L. Hitchman, Chemical Vapour Deposition: Precursors,
    Processes and Applications. 2009: Royal Society of Chemistry.
    8. H. Van Bui, F. Grillo, and J. R. van Ommen, "Atomic and molecular layer deposition:
    off the beaten track". Chemical Communications 53(1) (2017), 45-71.
    9. S. M. George, "Atomic Layer Deposition: An Overview". Chemical Reviews 110(1)
    (2010), 111-131.
    10. M. Karg, et al., "Atomic Layer Deposition of Silica on Carbon Nanotubes".
    Chemistry of Materials 29(11) (2017), 4920-4931.
    11. D. Braga, et al., "Quantitative Determination of the Band Gap of WS2 with
    Ambipolar Ionic Liquid-Gated Transistors". Nano Letters 12(10) (2012), 5218-5223.
    12. W. Zhao, et al., "Evolution of Electronic Structure in Atomically Thin Sheets of WS2
    and WSe2". ACS Nano 7(1) (2013), 791-797.
    13. F. Gustavsson, et al., "Nanoparticle based and sputtered WS2 low-friction
    coatings — Differences and similarities with respect to friction mechanisms and
    tribofilm formation". Surface and Coatings Technology 232 (2013), 616-626.
    14. A. Splendiani, et al., "Emerging Photoluminescence in Monolayer MoS2". Nano
    Letters 10(4) (2010), 1271-1275.
    15. K. Pedersen, "Quantum size effects in nanostructures ". Lecture notes: Organic and
    Inorganic Nanostructures (2006).
    16. A. Chernikov, et al., "Exciton Binding Energy and Nonhydrogenic Rydberg Series
    in Monolayer WS2. Physical Review Letters 113(7) (2014), 076802.
    17. A. T. Hanbicki, et al., "Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2". Solid State
    Communications 203 (2015), 16-20.
    18. H.-C. Kim, et al., "Engineering Optical and Electronic Properties of WS2 by Varying
    the Number of Layers". ACS Nano 9(7) (2015), 6854-6860.
    19. H. Shi, et al., "Quasiparticle band structures and optical properties of strained
    monolayer MoS2 and WS2". Physical Review B 87(15) (2013), 155304.
    20. Z. Ye, et al., "Probing excitonic dark states in single-layer tungsten disulphide".
    Nature 513 (2014), 214.
    21. V. C. dos Santos, et al., "A new application for transition metal chalcogenides: WS2
    catalysed esterification of carboxylic acids". Catalysis Communications 91 (2017),
    16-20.
    22. C. W. Spicer, "Synthesis, characterization and chemical vapor deposition of
    transition metal di(tert-butyl)amido compounds". (2001).
    23. D. H. You, et al., "WNx Film Prepared by Atomic Layer Deposition using F-Free
    BTBMW and NH3 Plasma Radical for ULSI Applications". ECS Transactions 3(15)
    (2007), 147-152.
    24. S. Balasubramanyam, et al., "Plasma-enhanced atomic layer deposition of tungsten
    oxide thin films using ((BuN)-Bu-t)(2)(Me2N)(2)W and O-2 plasma". J. Vac. Sci.
    Technol. A 36(1) (2018), 7.
    25. Q. Cao, et al., "Realizing Stable p-Type Transporting in Two-Dimensional WS2
    Films". ACS Applied Materials & Interfaces 9(21) (2017), 18215-18221.
    26. R. Liu, et al., "Water Splitting by Tungsten Oxide Prepared by Atomic Layer
    Deposition and Decorated with an Oxygen-Evolving Catalyst". Angewandte
    Chemie-International Edition 50(2) (2011), 499-502.
    27. Y.-W. Yang, et al., Thermal decomposition mechanisms of tungsten nitride CVD
    precursors on Cu(1 1 1). Vol. 600. 2006: Surface Science. 743-754.
    28. J. C. F. Rodríguez-Reyes and A. V. Teplyakov, "Mechanisms of adsorption and
    decomposition of metal alkylamide precursors for ultrathin film growth". Journal of
    Applied Physics 104(8) (2008), 084907.
    29. C. Li, et al., "Large single-domain growth of monolayer WS2 by rapid-cooling
    chemical vapor deposition". Applied Physics Express 10 (2017), 075201.
    30. K. M. McCreary, et al., "Synthesis of Large-Area WS2 monolayers with Exceptional
    Photoluminescence". Scientific Reports 6 (2016), 19159.
    31. A. L. Elías, et al., "Controlled Synthesis and Transfer of Large-Area WS2 Sheets:
    From Single Layer to Few Layers". ACS Nano 7(6) (2013), 5235-5242.
    32. D. Xu, et al., "High Yield Exfoliation of WS2 Crystals into 1–2 Layer
    Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from
    WS2/CdS Nanorod Composites". ACS Applied Materials & Interfaces 10(3) (2018),
    2810-2818.
    33. J. Bachmann, "Atomic layer deposition, a unique method for the preparation of
    energy conversion devices". Beilstein Journal of Nanotechnology 5 (2014), 245-248.
    34. C. Marichy, M. Bechelany, and N. Pinna, "Atomic Layer Deposition of
    Nanostructured Materials for Energy and Environmental Applications". Advanced
    Materials 24(8) (2012), 1017-1032.
    35. Y. Wu, et al., "Antimony sulfide as a light absorber in highly ordered, coaxial
    nanocylindrical arrays: preparation and integration into a photovoltaic device".
    Journal of Materials Chemistry A 3(11) (2015), 5971-5981.
    36. D. K. Nandi, et al., "Intercalation based tungsten disulfide (WS2) Li-ion battery
    anode grown by atomic layer deposition". RSC Adv. 6(44) (2016), 38024-38032.
    37. M. Juppo, et al., "Deposition of molybdenum thin films by an alternate supply of
    MoCl5 and Zn". J. Vac. Sci. Technol. A 16(5) (1998), 2845-2850.
    38. M. Ritala, et al., "Effects of intermediate zinc pulses on properties of TiN and NbN
    films deposited by atomic layer epitaxy". Applied Surface Science 120(3) (1997),
    199-212.
    39. T. W. Scharf, et al., "Atomic layer deposition of tungsten disulphide solid lubricant
    thin films". Journal of Materials Research 19(12) (2004), 3443-3446.
    40. K.-M. Chang, et al., "Characteristics of Selective Chemical Vapor Deposition of
    Tungsten on Aluminum with a Vapor Phase Precleaning Technology". Journal of the
    Electrochemical Society 1997 144: 251-259 144 (1997), 251-259.
    41. S. Manzeli, et al., "2D transition metal dichalcogenides". Nature Reviews Materials
    2 (2017), 17033.
    42. D. J. Morgan, "Core-level spectra of powdered tungsten disulfide, WS2". Surface
    Science Spectra 25(1) (2018), 014002.
    43. J. L. Jordan, et al., "High-resolution photoemission study of the interfacial reaction
    of Cr with polyimide and model polymers". Physical Review B 36(3) (1987),
    1369-1377.
    44. H. B. u. D. Sellmann, "Röntgen-photoelektronenspektroskopische Untersuchungen
    an Pentacarbonyl-Chrom- und -Wolfram-Komplexen mit Stickstoffliganden". Z.
    Naturforsch. 33 b(Verlag Zeitschrift für Naturforschung) (1977), 173-179.
    45. F. Wang, et al., Strain-induced phonon shifts in tungsten disulfide nanoplatelets and
    nanotubes. Vol. 4. 2016.
    46. X. Xu, et al., "Microstructure and Elastic Constants of Transition Metal
    Dichalcogenide Monolayers from Friction and Shear Force Microscopy". Advanced
    Materials 30(39) (2018), 1803748.
    47. S. Bai, et al., "Synthesis mechanism and gas-sensing application of
    nanosheet-assembled tungsten oxide microspheres". Journal of Materials Chemistry
    A 2(21) (2014), 7927-7934.
    48. L. Xu, M.-L. Yin, and S. Liu, "Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors". Scientific Reports 4 (2014), 6745.
    49. H. Yoon, et al., Electrostatic spray deposition of transparent tungsten oxide thin-film
    photoanodes for solar water splitting. 2015.
    50. Z. Zhang, et al., Gasochromic properties of novel tungsten oxide thin films
    compounded with methyltrimethoxysilane (MTMS). Vol. 7. 2017. 41289-41296.
    51. A. Hammouda, et al., "Improving the sensitivity of Raman signal of ZnO thin films
    deposited on silicon substrate". Vibrational Spectroscopy 62 (2012), 217-221.
    52. M. J. Sowa, et al., "Plasma-enhanced atomic layer deposition of tungsten nitride". J.
    Vac. Sci. Technol. A 34(5) (2016), 051516.
    53. O. V. Kharissova and B. I. Kharisov, "Variations of interlayer spacing in carbon
    nanotubes". RSC Adv. 4(58) (2014), 30807-30815.
    54. A. Saravanan, et al., Efficiency of Transition Metals in Combustion Catalyst for
    High Yield Helical Multi-Walled Carbon Nanotubes. Vol. 6. 2014.

    QR CODE