簡易檢索 / 詳目顯示

研究生: 廖鴻仁
Hong-Ren Liao
論文名稱: 鈦介層對於氮氧化鈦薄膜之相轉變與其相關性質的影響
The influence of Ti interlayer on the phase transition and related properties of Ti(N,O) thin films
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 74
中文關鍵詞: 氮氧化鈦介層
外文關鍵詞: Ti(N,O), interlayer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在非平衡磁控濺射鍍膜系統中,氮氧化鈦薄膜成功的鍍著於鈦介層上。本實驗主要在探討鈦介層對於氮氧化鈦薄膜的結構與相關性質之影響。鈦介層的厚度透過二次離子質譜儀與掃瞄式電子顯微鏡的分析結果而推定。在氮氧化鈦薄膜與純鈦介層間可以觀察到一個介面擴散區,且氮原子與氧原子會自上層薄膜中擴散進入並與鈦介層發生反應。 透過X-ray繞射分析結果,可以發現在0與0.25 sccm的氧通量時主結構相為氮化鈦,而在0.75與1.5 sccm的氧通量中轉為Ti3O5;並且在1.5 sccm的氧通量中,膜的上層可以發現TiO2。當膜的主結構相由氮化鈦轉為Ti3O5時,硬度出現明顯的下降,殘留應力也有減少現象,而膜的電阻率則是大幅度的上升。隨著膜厚的增加,鈦介層汲取氧原子的相對距離也隨著增多,吸收氧原子的效果也隨著越遠離鈦介層而變差,因此可以在氧通量0.75與1.5 sccm的最厚試片中發現膜的上層有TiO2的存在。概要而言,鈦介層吸收了氮氧化鈦薄膜中的氧原子與氮原子並產生反應,進而造成氮氧化鈦薄膜的相轉換並影響其相關的性質。


    The Ti(N,O)/Ti thin films has been successfully deposited by unbalanced magnetron sputtering (UBMS) system. The purpose of this thesis was to study the influence of Ti interlayer on the structure and related properties of the Ti(N,O) thin film. Secondary ion mass spectroscopy (SIMS) and scanning electron microscopy (SEM) were used to determine the thickness of the Ti interlayer. An interdiffusion zone was found to form between the Ti(N,O) film and the pure-Ti interlayer, where oxygen and nitrogen atoms diffused from the film and reacted with the Ti interlayer. As a result, instead of TiO2, a oxygen deficient Ti3O5 was formed in the Ti(N,O) film at 0.75 and 1.5 sccm O2, and thereby affecting the related film properties. The X-ray diffraction (XRD) results showed that the major phase of the Ti(N,O) thin film was TiN at 0 and 0.25 sccm O2 and Ti3O5 at 0.75 and 1.5 sccm O2; TiO2 was observed in the upper layer of the film deposited at 1.5 sccm O2. The film hardness significantly decreased, residual stress moderately decreased and the electrical resistivity substantially increased as the dominant phase changed from TiN to Ti3O5. As the film thickness increased, the diffusion distance of the O atoms that absorbed by the Ti interlayer also increased, and therefore, TiO2 could form in the upper layer of the film deposited at the 0.75 and 1.5 sccm O2 for 6 hours. In summary, the effect of Ti interlayer was mainly from the absorption and reaction of O and N in the Ti(N,O) film, which significantly affected the phase transition and the related properties of the film.

    Contents v Figure Caption vii Table Caption ix Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Characteristics of Ti(N,O) films 3 2.1.1 Ti(N,O) films 3 2.1.2 TiN 4 2.1.3 Ti3O5 4 2.1.4 TiO2 5 2.2 The effect of interlayer 6 2.3 The influence of oxygen content and deposition time (thickness) 7 Chapter 3 Experimental Details 9 3.1 Specimen Preparation 9 3.2 Characterization Methods 12 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 12 3.2.2 XRD and GIXRD 13 3.2.3 Rutherford Backscattering Spectroscopy (RBS) 14 3.2.4 SIMS 15 3.2.5 Field-Emisson Gun Scanning Electron Microscopy (FEG-SEM) 15 3.3 Properties Measurements 15 3.3.1 Electrical Resistivity 15 3.3.2 Hardness 16 3.3.3 Residual Stress Analysis 16 3.3.4 Coloration 19 Chapter 4 Results 20 4.1 Microstructure and Thickness 20 4.1.1 Scanning Electron Microscopy (SEM) 20 4.1.2 Secondary Ion Mass Spectroscopy (SIMS) 28 4.2 Compositions 29 4.2.1 X-ray Photoelectron Spectroscopy (XPS) 29 4.2.2 RBS 30 4.3 Structure 43 4.3.1 X-ray diffraction (XRD) 43 4.3.2 Glancing incident X-ray diffraction (GIXRD) 44 4.3 Properties 49 4.3.1 Hardness 49 4.3.2 Residual stress 49 4.3.3 Electrical resistivity 50 4.3.4 Coloration 50 Chapter 5 Discussion 56 5.1 Phase transition and Mechanical Properties 56 5.2 Effect of Interlayer 62 Chapter 6 Conclusions 67 References 68

    1. J. H. Huang, H. C. Yang, X. J. Guo, G. P. Yu, Surf. Coat. Technol. 195 (2005) 204.
    2. W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 168 (2003) 43.
    3. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films 447-448 (2004) 449.
    4. Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
    5. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
    6. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
    7. A. Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
    8. A. Fujishima, K. Honda, Nature 37 (1972) 238.
    9. H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 92 (1994) 267.
    10. B. O’Regan, M. Gratzel, Nature (London) 353 (1991) 737.
    11. A. Hagfelt, M. Gratznel, Chem. Rev. 95 (1995) 49.
    12. A. Fujishima, K. Honda, Bull. Chem. Soc. Jpn. 44 (1971) 1148.
    13. T. Kawai, T. Sakata, Nature 286 (1980) 474.

    14. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431.
    15. G. S. Brady, Materials Handbook, 10th ed., McGraw-Hill, New York, 1971.
    16. Y. H. Lee, Vacuum 51 (1998) 503.
    17. M. Lazaror, P. Raths, H. Metager, W. Spirkl, J. Appl. Phys. 77 (5) (1995) 2133.
    18. U. Koslowski, K. Ellmer, P. Bogdanoff, T. Dittrich, T. Guminskaya, H. Tributsch, J. Vac. Sci. Technol. A 24 (2006) 2199.
    19. Shao-Hsien Chiu, “Synthesis and Characterization of Nanocrystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System” 2006, Master Thesis, National Tsing Hua University, R.O.C.
    20. L. Hultman, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. Cryst. Growth 92 (1988) 639.
    21. E. Alves, A.R. Ramos, N.P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta, U. Kreissig, Surf. Coat. Technol. 180-181 (2004) 372.
    22. E. Ariza, L. A. Rocha, F. Vaz, S. C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J. P. Rivi□re, Thin Solid Films 469-470 (2004) 274.
    23. L. Cunha, F. Vaz, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Rivi□re, Surf. Coat. Technol. 200 (2006) 2917.
    24. B.R. Weinberger, R.B. Garber, Appl. Phys. Lett. 66 (1995) 2049.
    25. C. He, X.Z. Li, N. Graham, Y. Wang, Appl. Catal., A. 305 (2006) 54.

    26. S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad, M. Wuttig, Thin Solid Films 468 (2007) 48.
    27. P. Carvalho, F. Vaz, L. Rebbouta, L. Cunha, C. J. Tavares, C. Moura, J. Appl. Phys. 98 (2005) 023715/1.
    28. J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, J. Appl. Phys. 75 (5) (1992) 1805.
    29. Min J. Jung, Kyung H. Nam, Yun M. Chung, Jin H. Boo, Jeon, G. Han, Surf. Coat. Technol. 171 (2003) 71.
    30. Yoichiro Tanaka, Edwin Kin, John Forster, Zheng Xu, J. Vac. Sci. Technol. B 17 (2) (1999) 416.
    31. Katsuhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami Ohnishi, J. Phys. D: Appl. Phys. 37 (2004) 1095.
    32. H. Ljungcrantz, M. oden, L. Hultman, J.E. Greene, and J.E. Sundgren, J. Appl. Phys. 80 (12) (1996) 6725.
    33. O. Kubaschewski, and C. B. Alocock, P. J. Spencer, Materials Thermochemistry 6 edition, Pergamon Press, New York, 1993.
    34. Liaoying Zheng, Sens. Actuators, B 94 (2003) 294.
    35. S. □sbrink and A. Magn□li, Acta Crystallogr. 12, 575 (1959).
    36. J. B. Goodenough, Prog. Solid State Chem. 5, 149 (1971).
    37. C. Hurf, R. Kniep, J. Mater. Sci. 34 (1999) 1287.
    38. Liaoying Zheng, Sens. Actuators, B 88 (2003) 115.

    39. Yves Wouters, Alain Galerie, Jean-Pierre Petit, J. Electrochem. Soc. 154 (10) (2007) 587.
    40. Ő zlem Duyar, Frank Placido, H Zafer Durusoy, J. Phys. D: Appl. Phys. 41 (2008) 095307.
    41. F. X. Wang, C. K. Hwangbo, B.Y. Jung, J.H. Lee, B.H. Park, N.Y. Kim, Surf. Coat. Technol. 201 (2007) 5367.
    42. A. Fujishima, K. Hashimoto, T. Watanabe, “TiO2 Photocatalysis Fundamentals and Applications”, 1999, BKC, Tokyo.
    43. T. Watanabe, A. Nakajima, R.Wang, T. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Thin Solid Films 351 (1999) 260.
    44. M. K. Lee, Y. M. Hung, J. J. Huang, Jpn. J. Appl. Phys. 40 (2001) 6543.
    45. Y. Choi, S. Yamamoto, T. Umebayashi, M. Yoshikawa, Solid State Ionics 172 (2004) 105.
    46. B. R. Weinberger, R.B. Garbar, Appl. Phys. Lett. 66 (1995) 2409.
    47. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol., C (2000) 1.
    48. L. J. Meng, M. Andritschky, M. P. Dos Santos, Thin Solid Films 223 (1993) 242.
    49. W. L. Pan, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 110 (1998) 111.
    50. J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys. 65 (2000) 310.
    51. B. F. Chen, W. L. Pan, G. P. Yu, J. Hwang, J. H. Huang, Surf. Coat. Technol. 111 (1999) 16.

    52. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mnnling, P. Nesladek, G. Dollinger, et. al., Surf. Coat. Technol. 133-134 (2000) 152
    53. E. Kusano, M. Kitagawa, A. Sato, T. Kobayashi, H. Nanto, A. Kinbara, Nanostruct. Mater. 12 (1999) 807.
    54. N. Kikuchi, M. Kitagawa, A. Sato, E. Kusano, H. Nanto, A. Kinbara, Surf. Coat, Technol. 126 (2000) 131.
    55. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, Thin Solid Films 345 (1999) 263.
    56. D. S. Rickerby, A. M. Jones, B. A. Bellamy, Surf. Coat. Technol. 37 (1989) 4375.
    57. F. S. Shieu, L. H. Cheng, M. H. Shiao, S. H. Lin, Thin Solid Films 311 (1997) 138.
    58. J. H. Huang, Y. P. Tsai, G. P. Yu, Thin Solid Films 355-356 (1999) 440.
    59. V. Valvoda, R. Kuzel Jr., R. Cermy, J. Musil, Thin Solid Films 156 (1988) 53.
    60. A. Schroer, W. Ensinger, G. K. Wolf, Mater. Sci. Eng. A140 (1991) 625.
    61. L. Cunha, M. Andritschky, Surf. Coat. Technol. 111 (1999) 158.
    62. Fouad. Attar, Surf. Coat. Technol. 78 (1996) 78.
    63. M. Wittling, A. Bendavid, P. J. Martin, M. V. Swain, Thin Solid Film 270 (1995) 283.
    64. J. H. Huang, F. Y. Ouyang, G. P. Yu, Surf. Coat. Technol. 201 (2007) 7043.
    65. P. Scherrer, Gott. Nachr. 2 (1918) 98
    66. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958) 233
    67. G. G. Stoney, Proc. R. Soc. Lond. A82 (1909) 17
    68. Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf, Sci. Eng. 126 (2004) 10.
    69. C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73
    70. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564-158
    71. Naresh C. Sha and Hadand G. Tommpkims, J. Appl. Phys. 72 (7) (1992) 3072.
    72. M. Matsuoka, S Isotani, J. C. R. Mittani, and J. F. D. Chubaci. J. Vac. Sci. Technol. A 23(1) (2005) 137.
    73. John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS and AES”, John Wiley & Sons Ltd., (2003) p.64.
    74. Gonbeau D., Guimon C., Pfister-Guillouzo G., Levasseur A., Meunier G., and Dormoy R. Surf. Sci. 254, 81 (1991).
    75. http://webbook.nist.gov/chemistry/
    76. L. Wickikowski, B Kusz, L. Murawaki, K. Szaniawska, and B. Susla, Vaccum 54 (1999) 221.
    77. C. N. Sayers, N.A. Armstrong, Surf. Sci. 77 (1978) 301.
    78. J. Pouilleau, D. Devilliers, F. Garrido, S, Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B47 (1997) 235.
    79. JCPDS 89-4733.
    80. JCPDS 82-1138.
    81. JCPDS 89-4921.
    82. J. H. Huang, K. H. Chang, G. P. Yu, Surf. Coat. Technol. 201 (2007) 6404.
    83. Z. E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, 2005, Master Thesis, National Tsing Hua University, R.O.C.
    84. J. Graciani, J. Fedez Sanz, T. Asaki, K. Nakamura, J. A. Rodriguez, J. Chem. Phys. 126 (2007) 244713.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE