研究生: |
王志遠 Chih-Yuan Wang |
---|---|
論文名稱: |
氧化矽奈米線之成長機制及其陰極發光特性之研究 Studies on the silicon oxide nanowire growth mechanism and its cathodoluminescence properties |
指導教授: |
施漢章
Han C. Shih |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 氧化矽 、奈米線 、固態-液態-固態 、白金觸媒 、陰極發光 、高溫爐管 |
外文關鍵詞: | silica, nanowires, solid-liquid-solid, platinum, cathodoluminescence, furnace |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是使用高溫爐管進行非晶氧化矽奈米線之合成,並涵蓋了其成長機制之探討及其陰極發光性質之研究兩大部分。對於氧化矽奈米線之合成,吾人使用晶面為(100)的單晶矽晶圓直接作為奈米線的固態來源,經由濺鍍一層約5奈米的白金觸媒層,在爐管中通入含10%氫氣的氬氣及1100°C高溫條件下,持溫5小時,來合成長度可達數百微米、直徑約40-60奈米的非晶氧化矽奈米線,經由電子顯微鏡、X光繞射…等多種分析方法來証明成長機制為固態-液態-固態機制。接著我們改良此成長機制為二階段成長法,包含第一階段的熱氧化在矽晶圓表面製作一層二氧化矽的薄膜,一樣鍍上白金觸媒之後,進入第二階段的高溫合成條件,在通入不同的氣氛下,此二階段合成法可大量成長平直或彎曲的氧化矽奈米線,並在短時間內(<2小時)即可成長出極厚的奈米線膜層,效率比傳統的固態-液態-固態機制高出許多。我們並使用化學分析電子能譜儀及紅外線光譜儀等儀器對其結構變化進行研究。第二部份,在陰極發光性質量測方面,我們分別針對單一根氧化矽奈米線及氧化矽奈米線組成之薄膜進行分析,發現奈米線的藍光發光強度比紅光發光強度高出20倍以上,與傳統塊材或是薄膜的二氧化矽發光性質極不相同,如此強烈的藍光強度是前所未見的,相信可以提供未來奈米光電元件上無窮潛力的應用。最後,我們比較純的氧化矽奈米線以及摻雜碳和錫的氧化矽奈米線之間陰極發光性質的差異,證明了摻雜對發光的影響,並可做為將來調變發光波段的開發與研究參考。
In this work, amorphous silicon oxide nanowires were successfully synthesized by a furnace and its growth mechanism and cathodoluminesce properties were well studied as well. For the synthesis, a Si(100) wafer is used as the solid source for the silicon oxide nanowire growth and the a sputtered platinum thin film ~ 5 nm is used as the catalyst. The growth is achieved under an atmosphere of a mixture of Ar gas with 10% H2 at temperature of 1100°C for 5 hrs. The product is amorphous SiOx nanowires with a diameter of ~40-60 nm and a length of ~hundreds of μm. The growth is confirmed as the solid-liquid-solid mechanism. Then we improved this SLS mechanism to a two-step growth method for a large scale of amorphous SiOx nanowire films. The two-step growth method introduces an oxidation process of the silicon wafer before the SLS growth. Two kinds of nanowires can be obtained by this method: for one is a thick amorphous SiOx nanowire film with smooth and straight nanowires inside and the other is a thinner film with curved and coarsening nanowires. The two-step growth method can provide higher efficiency and more flexibility than the traditional SLS mechanism. In the second part, the cathodoluminescence of these SiOx nanowires were characterized and an intense blue emission at ~2.73 eV was found out with an intensity of more than 20 times than the red emission at ~1.99 eV, which is very different from the bluk or thin film silica. This strong cathodoluminescence can have applications in the nano optoelectronics and in the fundamental research of mesoscopic science as well. At last, we have compared the difference in the cathodoluminescence of the pure and doped silica nanowires and the origin of the defects associating the luminescence were discussed. The manipulation of the doping elements can achieve the modification of the cathodoluminescence and thus provide potential applications in the optoelectronics devices in the future.
References
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56-58.
[2] Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science 291 (2001) 851-853.
[3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. King, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science 292 (2001) 1897-1899.
[4] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers”, Nature 421 (2003) 241-245.
[5] O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, “Tunneling spectroscopy of the elementary excitations in a one-dimensional wire”, Science 295 (2002) 825-828.
[6] S. H. Lai, K. L. Chang, H. C. Shih, K. P. Huang, and P. Lin, “Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures”, Appl. Phys. Lett. 85 (2004) 6248-6250.
[7] H. H. Lin, C. Y. Wang, H. C. Shih, J. M. Chen, and C. T. Hsieh, “Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions”, J. Appl. Phys. 95 (2004) 5889-5895.
[8] C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field emission from various CuO nanostructures”, Appl. Phys. Lett. 83 (2003) 3383-3385.
[9] L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen, and H. C. Cheng, “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes”, Appl. Phys. Lett. 82 (2003) 4334-4336.
[10] Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronics magazine, Volume 38, Number 8, April 19, 1965
[11] http://www.intel.com/pressroom/archive/speeches/barrett20020225.htm (2007), Craig Barrett, “Intel keynote transcript”, Intel Developer Forum (spring), San Francisco, California, USA, February 25, 2002
[12] http://www.3dchem.com/element.asp?selected=Si (2007)
[13] I. Fanderlik, “Silica glass and its application”, Elsevier (1991)
[14] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York) (1982)
[15] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priole, Nature (London) 408 (2000) 440
[16] K. W. Wecht, “Large-range refractive-index control of silicon monoxide antireflection coatings using oblique incident thermal evaporation”, Applied Optics 30 (1991) 4133-4135
[17] C. T. Lee, C. T. Huang, and J. Y. Chen, “Effect of SiOx buffer layer on propagation loss in LiNbO3 channel waveguides”, J. Appl. Phys. 84 (1998) 1204-1209
[18] S. Wolf and R. N. Tauber, “Silicon Processiong for the VLSI Era Volume 1”, (1986) 119.
[19] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding”, Nature 426 (2003) 816-819
[20] D. P. Yu, Q. L Han, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G.. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters”, Appl. Lett. Lett. 73 (1998) 3076-3078.
[21] S. Nakamura, T. Mutai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64 (1994) 1687-1689.
[22] A. P. Young, J. Schäfer, G. H. Jessen, R. Bandhu, L. J. Brillson, G.. Lucovsky, and H. Niimi, “Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si-SiO2 interfaces”, J. Vac. Sci. Technol. B 16 (1998) 2177-2181.
[23] M. A. Stevens Kalceff and M. R. Phillips, “Cathodoluminescence microcharacterization of the defect structure of quartz”, Phys. Rev. B 52 (1995) 3122-3134.
[24] X. S. Peng, X. F. Wang, J. Zhang, Y. W. Wang, S. H. Sun, G. W. Meng, and L. D. Zhang, “Blue-light emission from amorphous SiOx nanoropes”, Appl. Phys. A 74 (2002) 831-833.
[25] L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, “Aligned silica nanofibers”, J. Phys.: Condens. Matter. 14 (2002) L473-L477.
[26] L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, “Strong blue photoluminescence from aligned silica nanofibers” Appl. Phys. A 76 (2003) 625-627.
[27] J. Q. Hu, Y. Jiang, X. M. Meng, C. S Lee, and S. T. Lee, “A simple large-scale synthesis of very long aligned silica nanowires”, Chem. Phys. Lett. 367 (2003) 339-343.
[28] G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Zhang, “Synthesis and photoluminescence of aligned SiOx nanowire arrays”, Appl. Phys. A 76 (2003) 119-121.
[29] Z. L. Wang, R. P. Gao, J. L. Cole, and J. D. Stout, “Silica nanotubes and nanofiber arrays”, AdV. Mater. 12 (2000) 1938-1940.
[30] Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G.. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate”, J. Mater. Res. 16 (2001) 683-686.
[31] Y. W. Wang, C. H. Liang, G.. W. Meng, X. S. Peng, and L. D. Zhang, “Synthesis and photoluminescence properties of amorphous SiOx nanowires”, J. Mater. Chem. 12 (2002) 651-653.
[32] M. Paulose, O. K. Varghese, and C. A.Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth”, J. Nanosci. Nanotechnol. 3 (2003) 341-346.
[33] Y. J.Chen, J. B. Li, and J. H. Dai, “Si and SiOx nanostructures formed via thermal evaporation”, Chem. Phys. Lett. 344 (2001) 450-456.
[34] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires”, Chem. Phys. Lett. 336 (2001) 53-56.
[35] Y. J. Chen, J. B. Li, Y. S. Han, Q. M. Wei, and J. H. Dai, “A novel morphology of SiOx nanowires with a modified diameter”, Appl. Phys. A 74 (2002) 433-435.
[36] H. F. Zhang, C. M. Wang, E. C. Buck, and L. S. Wang, “Synthesis, characterization, and manipulation of helical SiO2 nanosprings”, Nano Lett. 3 (2003) 577-580.
[37] H. Takikawa, M. Yatsuki, and T. Sakakibara, “Synthesis of silicon oxide nanofibers by sublimation of SiC in medium vacuum with oxygen flow”, Jpn. J. Appl. Phys. 38 (1999) L401-L402.
[38] P. Carter, B. Gleeson, and D. J. Young, “Rapid growth of SiO2 nanofibers on silicon-bearing alloys”, Oxid. Met. 56 (2001) 375-394.
[39] Z. Zhang, G.. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates”, AdV. Mater. 13 (2001) 197-200.
[40] B. Zheng, Y. Wu, P. Yang, and J. Liu, “Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys”, AdV. Mater. 14 (2002) 122-124.
[41] Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires”, J. Am. Chem. Soc. 124 (2002) 124 1817-1822.
[42] M. Zhang, Y. Bando, L. Wada, and K. Kurashima, “Synthesis of nanotubes and nanowires of silicon oxide”, J. Mater. Sci. Lett. 18 (1999) 1911-1913.
[43] C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang, and Z. Q. Chu, “Preparation and characterization of amorphous SiOx nanowires”, J. Non-Cryst. Solids 277 (2000) 63-67.
[44] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D silicon oxide nanostructures: from nanoflowers to radiolaria”, J. Mater. Chem. 8 (1998) 1859-1864.
[45] J. C. Wang, C. Z. Zhan, and F. G.. Li, “The synthesis of silica nanowire array”, Solid State Commun. 125 (2003) 629-631.
[46] R. Ma and Y. Bando, “In-Ni microballs catalyzed growth of dense and highly aligned silica nanowires”, Chem. Phys. Lett. 377 (2003) 177-183.
[47] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett. 4 (1964) 89-90.
[48] J. L. Elechiguerra, J. A. Manriquez, and M. J. Tacaman, “Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst”, Appl. Phys. A 79 (2004) 461-467.
[49] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction”, J. Vac. Sci. Technol. B 15 (1997) 554-557.
[50] Y. G. Zhang, N. L. Wang, R. R. He, J. Liu, X. Z. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Crystal Growth 233 (2001) 803-808.
[51] K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor-solid mechanism”, Chem. Phys. Lett. 376 (2003) 498-503
[52] Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “One-dimensional growth mechanism of crystalline silicon nanowires”, J. Cryst. Growth 197 (1999) 136-140.
[53] Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Bulk-quantity Si nanowires synthesized by SiO sublimation”, J. Cryst. Growth 212 (2000) 115-118.
[54] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism”, Chem. Phys. Lett. 323 (2001) 224-228.
[55] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism”, Physica E 9 (2001) 305-309.
[56] Y. J. Trenteler, K. M. Hickman, S. B. Goel, A. M. Viano, P. C. Gobons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth”, Science 270 (1995) 1791-1794
[57] R. S. Wagner, In Whisker Technology; Levitt, A. P., Ed.; Wiley: New York, (1970) 47-119.
[58] Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, W. Y. Zhou, and W. Z. Li, “Very long carbon nanotubes”, Nature 394(1998) 631-632.
[59] S. Fan, M. G.. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties”, Science 283 (1999) 512-514.
[60] A. M. Morales and C. M Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science 279 (1998) 208-211.
[61] X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires”, AdV. Mater. 12 (2000) 298-302.
[62] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires”, J. Am. Chem. Soc. 123 (2001) 2791-2798.
[63] P. D. Yang and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites”, J. Mater. Res. 12 (1997) 2981-2996.
[64] S. Jin, Q. Li, and C. S. Lee, “Direct growth of amorphous silicon oxide nanowires and crystalline silicon nanowires from silicon wafer”, Phys. Stat. Sol. A 188 (2001) R1-R2.
[65] S. H. Li, X. F. Zhu, and Y. P. Zhao, “Carbon-assisted growth of SiOx nanowires”, J. Phys. Chem. B 108 (2004) 17032-17041.
[66] S. Kar and S. Chaudhuri, “Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties”, Solid State Commun. 133 (2005) 151-155.
[67] N. G. Shang, U. Vetter, I. Gerhards, H. Hofsäss, C. Ronning, and M. Seibt, “Luminescence centres in silica nanowires”, Nanotechnology 14 (2006) 3215-3218.
[68] D. L. Griscom, “Defect structure of glasses. Some outstanding questions in regard to vitreous silica”, J. Non-Cryst. Solids 73 (1985) 51-77.
[69] D. L. Griscom, “E' center in glassy silicon dioxide: oxygen-17, proton and "very weak" silicon-29 superhyperfine structure”, Phys. Rev. B 22 (1980) 4192-4202.
[70] K. Nagasawa, Y. Hoshi, and Y. Ohki, “Effect of oxygen content on defect formation in pure-silica core fibers”, Jpn. J. Appl. Phys. 26 (1987) L554-L557.
[71] E. J. Friebele, D. L. Griscom, M. Stapelbroek, and R. A. Weeks, “Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica”, Phys. Rev. Lett. 42 (1979) 1346-1349.
[72] D. L. Griscom and E. J. Friebele, “Fundamental defect centers in glass: silicon-29 hyperfine structure of the nonbridging oxygen hole center and the peroxy radical in amorphous silicon dioxide”, Phys. Rev. B 24 (1981) 4896-4898.
[73] P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, “Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 4 (1986) 689-694
[74] D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system”, Phys. Rev. B 40 (1989) 1795-1805
[75] A. Gucsik, C. Koeberl, F. Brandstätter, E. Libowitzky, and M. Zhang, “Infrared, Raman, and cathodoluminescence studies of impact glasses”, Meteorit. Planet. Sci. 39 (2004) 1273-1285
[76] A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. II. Calculation of phonon spectra and interpretation of the IR transmission of SiOx”, phys. Stat. sol. (b) 121 (1984) 505
[77] R. Salh, A. von Czarnowski, M. V. Zamoryanskaya, E. V. Kolesnikova, and H. J. Fitting, “Cathodoluminescence of SiOx under-stoichiometric silica layers”, phys. stat. sol. (a) 203 (2006) 2049-2057
[78] N. Benissad, C. Boisse-Laporte, C. Rallée, A. Granier, and A. Goullet, “Silicon dioxide deposition in a microwave plasma creator”, Surf. Coat. Technol. 116-119 (1999) 868-873
[79] F. H. Lu and H. Y. Chen, “XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere”, Thin Solid Films 355-356 (1999) 374-379.
[80] Y. K. Rao, “Stoichiometry and Thermodynamics of Metallurgical Process”, Cambridge University Press, Cambridge, 1985.
[81] D. R. Gaskell, “Introduction to the Thermodynamics of Materials”, Taylor & Francis, 3rd ed., 1995.
[82] http://www.veeco.com/library/elements/images/VaporPress1B_large.jpg, http://www.veeco.com/library/elements/images/VaporPress2b_large.jpg (2007)
[83] H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. Gösele, “Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications”, small 2 (2006) 561-568
[84] S. H. Sun, G. W. Meng, M. G. Zhang, Y. T. Tian, T. Xie, and L. D. Zhang, “Preparation and characterization of oriented silica nanowires”, Solid State Communications 128 (2003) 287-290
[85] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Mullenberg, "Handbook of X-ray Photoelectron Spectroscopy", Perkin-Elmer Corp. (Physical Electronics Division), Eden Prairie, Minnesota, 1979.
[86] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombenand, and J. Chastain (editor), "Handbook of X-ray photoelectron spectroscopy ", Perkin-Elmer Corporation (Physical Electronics Division), Eden Prairie, Minnesota, 1992
[87] http://www.lasurface.com/database/elementxps.php (2007): on-line database source for XPS, AES, UPS, etc.
[88] S. H. Li, X. F. Zhu, and Y. P. Zhao, “Carbon-Assisted Growth of SiOx Nanowires”, J. Phys. Chem. B 108 (2004) 17032-17041
[89] Coutures JP, Erre R, Massiot D, Landron C, Billard D, Peraudeau G, "Ar+ ion-beam effects on MxOy-alumina silica glasses”, Radiation Effects and Defects in Solids 98 (1986) 83-91
[90] A.P. Young, R. Bandhu, J. Schäfer, H. Niimi, and G. Lucovsky, “Cathodoluminescence spectroscopy of nitrided SiO2-Si interface”, J. Vac. Sci. Technol. A 17 (1999) 1258-1262
[91] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”, Phys. Rev. B 45 (1992) 586-591
[92] H. Koyama, “Cathodoluminescence study of SiO2”, J. Appl. Phys. 51 (1980) 2228-2235
[93] E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica”, J. Non-Cryst. Solids 71 (1985) 133
[94] T. Munekuni, Y. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass”, J. Appl. Phys. 68 (1990) 1212
[95] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”, Phys. Rev. B 45 (1992) 586-591
[96] H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers”, J. Non-Cryst. Solids 95 (1987) 655
[97] A. N. Trukhin, L. N. Skuja, A. G. Boganov, and V. S. Rudenko, “The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon”, J. Non-Cryst. Solids 149 (1992) 96-101
[98] K. Tanimura, T. Tanaka, and N. Itoh, “Creation of quasistable lattice defects by electronic excitation in SiO2”, Phys. Rev. Lett. 51 (1983) 423-426
[99] C. E. Jones and D. Embree, “Correlations of the 4.77-4.28-eV luminescence band in silicon dioxide with the oxygen vacancy”, J. Appl. Phys. 47 (1976) 5365-5371
[100] S. W. McKnight and E. D. Palik, “Cathodoluminescence of SiO2 films”, J. Non-Cryst. Solids 40 (1980) 595-604
[101] C. Y. Wang, T. W. Chen, C. C. Lin, W. J. Hsieh, K. L. Chang, and H. C. Shih, “synthesis, characterization and cathodoluminescence of nanostructured SnO2 using microwave plasma enhanced CVD”, J. Phys. D: Appl. Phys. 40 (2007) 2787-2791
[102] J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons”, Adv. Funct. Mater. 13 (2003) 493
[103] J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, “Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons”, J. Phys. Chem. B 106 (2002) 3823
[104] G. Salviati, L. Lazzarini, M. Z. Zha, V. Grillo, and E. Carlino, “Cathodoluminescence spectroscopy of single SnO2 nanowires and nanobelts”, Phys. Status Solidi a 202 (2005) 2967-2970
[105] F. Gu, S. F. Wang, C. F. Song, M. K. Lü, Y. X. Qi, G. J. Zhou, D. Xu, and D. R. Yuan, “Synthesis and luminescence properties of SnO2 nanoparticles”, Chem. Phys. Lett. 372 (2003) 451
[106] P. J. Alonso, L. E. Halliburton, E. E. Kohnke, and R. B. Bossoli, “X-ray-induced luminescence in crystalline SiO2”, J. Appl. Phys. 54 (1983) 5369-5375
[107] X. H. Yang and S. W. S. Mckeever, “The pre-dose effect in crystalline quartz”, J. Phys. D: Appl. Phys. 23 (1990) 237-244
[108] B. J. Luff and P. D. Townsend, “Cathodoluminescence of synthetic quartz”, J. Phys.: Condens. Matter 2 (1990) 8089-8097