簡易檢索 / 詳目顯示

研究生: 梁家榮
Jia-Rong Liang
論文名稱: 原位即時觀察單壁奈米碳管薄膜成長過程之研究
指導教授: 戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 單壁奈米碳管流動觸媒法
外文關鍵詞: SWCNT, the floating catalyst method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以垂直式流動觸媒法成長單壁奈米碳管,研究在此系統中單壁奈米碳管薄膜的生長過程。以原位即時攝影觀察到,在奈米碳管的成長過程中會伴隨著氣溶膠的生成。經由一系列不同實驗參數的觀察結果,推定此氣溶膠的生成是由於催化劑前驅物二茂鐵在高溫爐管中裂解還原成鐵原子,並進一步聚集形成奈米級的鐵團簇或是與其本身裂解的碳反應形成奈米碳管,而展現出氣溶膠的形態。
    另一方面,本實驗進一步的利用數位相機所具有調變焦距的功能,藉由改變焦距面來觀察氣溶膠與奈米碳管薄膜在高溫爐管中所生成的區域,配合以熱電偶所量測到的爐管溫度分佈,可得知氣溶膠與奈米碳管薄膜生成的溫度範圍。將所有奈米碳管成長結果加以歸納整理,可對使用流動觸媒法成長單壁奈米碳管提出一套較完整的成長模型。


    In this study, the vertical floating catalyst method was adopted to synthesize single-walled carbon nanotubes (SWCNTs) and to investigate the growth mechanism of the SWCNTs film. During the synthesis process, formation of the aerosol was in-situ observed. Furthermore, based on the experiment results, it was verified that the aerosol was synthesized due to the pyrolysis of ferrocene. It was concluded that ferrocene was decomposed at high temperature region of the furnace to form iron clusters due to collision in the floating gas. Besides, decomposition of hydrocarbon rings of ferrocene also contribute carbon source for CNT growth.
    Moreover, we used the digital camera with focal tunable to observe the locations of aerosol generation and SWCNTs film formation. Base on the furnace temperature distribution measured by thermocouple, the temperatures for aerosol and SWCNTs film formation were proposed. Furthermore, a model for SWCNT growth in the floating catalyst method was suggested.

    摘要………………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………III 總目錄…………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄………………………………………………………………VIII 第一章 緒論……………………………………………………………1 1.1 簡介……………………………………………………………1 1.2 奈米碳管的結構與性質………………………………………2 1.3 奈米碳管的製程………………………………………………3 1.3.1 電弧放電法 (arc-discharge)……………………………3 1.3.2 雷射蒸鍍法 (laser ablation)…………………………4 1.3.3 化學氣相沉積法 (chemical vapor deposition)……4 1.4 研究動機………………………………………………………5 第二章 文獻回顧………………………………………………………13 2.1化學氣相沉積法製備奈米碳管………………………………13 2.1.1 化學氣相沉積流動觸媒法………………………………13 2.1.2 化學氣相沉積製備單壁奈米碳管………………………14 2.2奈米碳管的量產及收集方式…………………………………15 2.3催化劑顆粒大小對成長單壁奈米碳管的影響………………15 2.4奈米碳管成長機制……………………………………………17 第三章 研究方法與實驗步驟…………………………………………30 3.1 研究方法……………………………………………………30 3.2 實驗步驟……………………………………………………31 3.3 實驗主要設備及分析儀器…………………………………32 3.3.1 垂直式CVD爐管……………………………………32 3.3.2 數位相機………………………………………………32 3.3.3 掃描式電子顯微鏡……………………………………32 3.3.4 拉曼光譜儀……………………………………………33 第四章 結果與討論……………………………………………………40 4.1垂直式流動觸媒法成長單壁奈米碳管………………………40 4.1.1標準製程…………………………………………………41 4.1.2載體氣體的影響…………………………………………43 4.1.3碳源的影響………………………………………………43 4.1.4催化劑的影響……………………………………………44 4.2比較各製程參數對二茂鐵在爐管中的影響…………………47 4.2.1製程溫度………………………………………………47 4.2.2反應壓力………………………………………………49 4.2.2二茂鐵揮發溫度…………………………………………49 4.3改變相機聚焦面觀察氣溶膠與奈米碳管反應區域…………50 4.4在爐管內裝置碳纖維對奈米碳管成長的影響………………52 4.5流動觸媒法製備單壁奈米碳管之成長模型…………………53 第五章 結論……………………………………………………………87 第六章 參考文獻………………………………………………………89

    1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerence, Nature, 318, 162~163 (1985)
    2. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56 (1991)
    3. Rice University: Rick Smalley’s Group Home Page Image Gallery
    4. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press, (1996)
    5. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes, Carbon, 33, 883 (1995)
    6. Hanada N, Sawada SI, Oshiyama A., New One-Dimensional Conductor Microtubles, Phys Rev Lett., 68, 1579 (1992)
    7. Mintmire JW, Dunlap BI, White CT., Are Fullerene Tubles Metallic?, Phys Rev Lett., 68, 631 (1992)
    8. Saito R, Fujita M, Dresselhaus G . Physical Properties of Carbon Nanotubes. Imperial College, 1998
    9. Yahachi Saito, Sashiro Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, 38, 169~182 (2000)
    10. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603~605 (1993)
    11. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243, 49, (1995)
    12. W. K Master, E. Munoz, M.T. Martinez, A.M. Benito, G.F. de la Fuente, Study of parameters important for the growth of single wall carbon nanotubes. Optical Materials, 17, 331~334 (2001)
    13. Masako Yudasaka, Toshinari Ichihashi, Toshiki Komatsu, Sumio Iijima, Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem. Phys. Lett., 299, 91~96 (1999)
    14. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Controlling single-wall nanotube diameters with variation in laser pulse power, Chem. Phys. Lett., 316, 13 (2000)
    15. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett., 72, 25 (1998)
    16. Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou, Plasma-induced alignment of carbon nanotubes, Appl. Phys. Lett., 77, 830 (2000)
    17. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 77, 3468 (2000)
    18. Z. P Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition, Appl. Phys. Lett., 73, 3845 (1998)
    19. Vincenzo Vinciguerra1, Growth mechanisms in chemical vapour deposited carbon nanotubes, Nanotechnology, 14, 655~660 (2003)
    20. Klinke C, Bonard JM, Kern K , Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes, Phys. Rev. B, 71,035403 (2005)
    21. Xihong Chen, Rongming Wang, Jun Xu and Dapeng Yu, TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition, Micron, 35, 455~460 (2004)
    22. Helveg S, Lopez-Cartes C, Sehested J, Atomic-scale imaging of carbon nanofibre growth, Nature, 427, 29 (2004)
    23. Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 39, 329~335 (2001)
    24. Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RL., Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32(4), 569 (1994)
    25. SiShen Xie, Li Song, Lijie Ci, Zhenping Zhou, Xinyuan Dou, Weiya Zhou, Gang Wang, Lianfeng Sun, Controllable preparation and properties of single-/double-walled carbon nanotubes, Sci. Technol. Adv. Mater., 6, 725~735 (2005)
    26. Lijie Ci, Sishen Xie, Dongsheng Tang, Xiaoqin Yan, Yubao Li, Zuqin Liu, Xiaoping Zou, Weiya Zhou, Gang Wang, Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts, Chem. Phys. Lett., 349, 191~195 (2001)
    27. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes, Phys. Rev. Lett., 80, 3779~3782 (1998)
    28. Jieshan Qiu, Yuliang An, Zongbin Zhao, Yongfeng Li, Ying Zhou, Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method, Fuel Processing Technology, 85, 913~920 (2004)
    29. Lijie Ci, Yanhui Li, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Preparation of carbon nanofibers by the floating catalyst method, Carbon, 38, 1933~1937 (2000)
    30. Ya-Li Li, Ian A. Kinloch, Alan H. Windle, Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, Science, 304, 276~278 (2004)
    31. Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma, CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films, 464-465, 286~289 (2004)
    32. S. Sun, H. Zeng, J. Am. Chem. Soc., 124, 8204 (2002)
    33. Gorbunov A, Jost O, Pompe W, Solid-liquid-solid growth mechanism of single-wall carbon nanotubes, Carbon, 40, 113 (2002)
    34. R.T.K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces-the effect of various oxide additives, J. Catalysis, 64, 464 (1980)
    35. A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32, 335 (1976)
    36. T. Baird, J.R. Fryer, B. Giant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 degreesc, Carbon, 12, 591 (1974)
    37. R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon ,Marcel Dekker, New York 83, (1978)
    38. Y.J. Yoon, H.K.Baik, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition, Diam. Relat. Mat., 10, 1214 (2001)
    39. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 40, 2043~2061 (2002)
    40. 林俊言「以流動觸媒法在垂直式爐管成長單壁奈米碳管之研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十五年七月
    41. Chem./Phy. Info, Merck KGaA, 803978, Ferrocene for synthesis.
    42. Liu G., Rodriguez J., A. Dvorak J., Hrbek, J., Jirsak, T., Chemistry of sulfur-containing molecules on Au(1 1 1): thiophene, sulfur dioxide, and methanethiol adsorption, Surf. Sci., 505, 295 (2002)
    43. Ren W.C., Li F., Cheng H.M., The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechnol., 6, 1139~1345 (2006)
    44. Ren W.C., Li F., Cheng H.M., Evidence for, and an Understanding of, the Initial Nucleation of Carbon Nanotubes Produced by a Floating Catalyst Method, J. Phys. Chem. B, 110, 16941~16946 (2006)
    45. Ren W.C., Li F., Chen J.A., Bai S., Cheng H.M., Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane, Chem. Phys. Lett., 359, 196~202 (2002)
    46. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Pobert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer and R.E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483 (1996)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE