研究生: |
何勃衛 Ho, Bo-Wei |
---|---|
論文名稱: |
利用一個隔室化的神經培養裝置產生不同挫傷程度的軸突以做藥物篩選 Using a compartmentalized culture device to generate axons at different levels of contusion injury for drug screening |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
袁俊傑
Yuan, Chiun-Jye 鄭美雲 Cheng, Mei-Yun |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 神經培養 、軸突 、挫傷 、藥物篩選 、隔室化 |
外文關鍵詞: | neuronal culture device, axon, contusion injury, drug screening, compartmentalized |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中樞神經系統的再生能力很弱,若是受到損傷,通常會是嚴重且不可逆的傷害。除了神經退化性疾病之外,受到外力衝擊而造成的神經損傷也是一大宗。在美國,一年之中,平均每一百萬人就有54人承受著脊椎損傷之苦。,在台灣平均每年每一百萬人中就有約151人承受著脊椎損傷之苦,更甚美國。脊髓損傷全球的發生率範圍在每百萬人13.0-163.4件之間,主要原因大多為車禍及摔倒。尋找神經軸突的再生與導引,以及相關調節軸突功能的藥物,對於醫治軸突損傷相關疾病的方法已是迫在眉睫。雖然目前對再生方面的了解有限,但隨著對神經軸突損傷的研究越多越廣,在深入理解傷後反應及再生機制後找到治療的機會是可以樂觀期待的。
本研究中使用本實驗室先前開發的神經細胞培養裝置,將直徑約為10 μm的細胞本體留在PCTE膜上,而軸突在PCTE膜下方第二層PDMS膜的管柱空間中生長,相似於腦軸突在脊椎中之排布,我在PCTE膜與PDMS膜間插入細針,藉此對軸突引發不同程度的拉伸損傷,並且實際檢驗是否能夠利用此裝置作為神經軸突保護藥物的篩選工具。我們希望藉此研究建立一套有助於神經軸突保護藥物的初期篩選系統,有效篩出富有療效潛力的藥物,然後進入動物實驗,期望減少實驗動物的使用數量,為全世界面臨脊椎損傷所苦的病患找出有效的治療方法,提升病患的生活品質、信心與尊嚴。
In the mammalian central nervous system, most injured axons do not regenerate. In addition to neuronal degenerative diseases, neuronal injuries are also often caused by mechanical forces. In the USA, approximately 54 cases per one million people suffer from spinal cord injuries each year. The incidence of traumatic spinal cord injury is about 151 cases per million people in Taiwan and is higher than that of the USA. In world-wide, the incidence of traumatic spinal cord injury is in a range between 13.0 and 163.4 cases per million people with the leading causes of motor vehicle crashes and falls. Finding cure for neuronal injuries is urgently needed. Although our understanding of the mechanisms of axonal regeneration is still incomplete, with rapid progresses in the field, finding a cure for spinal cord injury is a feasible task.
We utilize polycarbonate (PCTE) multi-pore cell filter and a hole-filled polydimethylsiloxane (PDMS) membrane to produce a compartmentalized neuronal culture devices. When grown in this device, the cell bodies are separated from the neurites by the PCTE membrane. The PDMS membrane containing holes of 500 μm in height, serve to separate axons from dendrites due to the latters’ shorter length. Neurons growing in such a device mimic those in the brain and spinal cord in their spatial arrangements. I could induce injury of different degrees to axons by inserting a fine needle between the PCTE and PDMS membrane. I also tried to test the feasibility of using this system for screening drugs which can protect axons from contusion injury. To the end, I hope to use this system as a spinal cord contusion injury model for drug screening and for uses in basic and clinical research. The use of this cell culture system will help reduce the experimental animals used in such studies.
Allen AR (1911) SURGERY OF EXPERIMENTAL LESION OF SPINAL CORD EQUIVALENT TO CRUSH INJURY OF FRACTURE DISLOCATION OF SPINAL COLUMN : A PRELIMINARY REPORT. JAMA LVII(11):878-880.
Allen AR (1914) Remarks on the Histopathological Changes in the Spinal Cord due to Impcat. An Experimental Study.
Alto LT, Havton LA, Conner JM, Hollis ER, 2nd, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106-1113.
Anderson TE (1982) A controlled pneumatic technique for experimental spinal cord contusion. J Neurosci Methods 6:327-333.
Bar-Kochba E, Scimone MT, Estrada JB, Franck C (2016) Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci Rep 6:30550.
Basso DM, Beattie MS, Bresnahan JC (1996a) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244-256.
Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W (1996b) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343-359.
Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148:453-463.
Birmingham AUoAaB (2017) Spinal Cord Injury Facts and Figures at a Glance. National Spinal Cord Injury Statistical Center.
Buki A, Povlishock JT (2006) All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181-193; discussion 193-184.
Burridge K, Turner CE, Romer LH (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119:893-903.
Canty AJ, Huang L, Jackson JS, Little GE, Knott G, Maco B, De Paola V (2013) In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat Commun 4:2038.
Case LC, Tessier-Lavigne M (2005) Regeneration of the adult central nervous system. Curr Biol 15:R749-753.
Cattin AL, Lloyd AC (2016) The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol 39:38-46.
Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209-233.
Cheng M-Y, Ho H-H, Huang T-K, Chuang C-F, Chen H-Y, Chung H-W, Leong W-C, Yang W-C, Fu C-C, Hsu Y-H, Chang Y-C (2017) A compartmentalized culture device for studying the axons of CNS neurons. Analytical Biochemistry 539:11-21.
Chotard C, Salecker I (2004) Neurons and glia: team players in axon guidance. Trends Neurosci 27:655-661.
Chung RS, Staal JA, McCormack GH, Dickson TC, Cozens MA, Chuckowree JA, Quilty MC, Vickers JC (2005) Mild axonal stretch injury in vitro induces a progressive series of neurofilament alterations ultimately leading to delayed axotomy. J Neurotrauma 22:1081-1091.
Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394-409.
Constantini S, Young W (1994) The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg 80:97-111.
Di Pietro V, Amorini AM, Tavazzi B, Hovda DA, Signoretti S, Giza CC, Lazzarino G, Vagnozzi R, Lazzarino G, Belli A (2013) Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol Cell Biochem 375:185-198.
Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27:9169-9180.
Friese MA, Schattling B, Fugger L (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10:225-238.
Gensel JC, Tovar CA, Hamers FP, Deibert RJ, Beattie MS, Bresnahan JC (2006) Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. J Neurotrauma 23:36-54.
Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123-126; discussion 126-128.
He Z, Jin Y (2016) Intrinsic Control of Axon Regeneration. Neuron 90:437-451.
Hill CS, Coleman MP, Menon DK (2016) Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 39:311-324.
Huang H, Yang W, Wang T, Chuang T, Fu C (2007) 3D high aspect ratio micro structures fabricated by one step UV lithography. J Micromech Microeng 17:291-296.
Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609-652.
Jazayeri SB, Beygi S, Shokraneh F, Hagen EM, Rahimi-Movaghar V (2015) Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J 24:905-918.
Jiang L, Zhong J, Dou X, Cheng C, Huang Z, Sun X (2015) Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience 301:375-383.
Kang Y, Ding H, Zhou H, Wei Z, Liu L, Pan D, Feng S (2017) Epidemiology of worldwide spinal cord injury: a literature review. Journal of Neurorestoratology Volume 6:1-9.
Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572-577.
Kumaria A, Tolias CM (2008) In vitro models of neurotrauma. Br J Neurosurg 22:200-206.
Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13:1496-1504.
Lingor P, Koch JC, Tonges L, Bahr M (2012) Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 349:289-311.
Lorenzana AO, Lee JK, Mui M, Chang A, Zheng B (2015) A surviving intact branch stabilizes remaining axon architecture after injury as revealed by in vivo imaging in the mouse spinal cord. Neuron 86:947-954.
Lübke DFJHR (2010) New Aspects of Axonal Structure and Function. Springer.
Magnuson DS, Lovett R, Coffee C, Gray R, Han Y, Zhang YP, Burke DA (2005) Functional consequences of lumbar spinal cord contusion injuries in the adult rat. J Neurotrauma 22:529-543.
Marcol W, Slusarczyk W, Gzik M, Larysz-Brysz M, Bobrowski M, Grynkiewicz-Bylina B, Rosicka P, Kalita K, Weglarz W, Barski JJ, Kotulska K, Labuzek K, Lewin-Kowalik J (2012) Air gun impactor--a novel model of graded white matter spinal cord injury in rodents. J Reconstr Microsurg 28:561-568.
Noble LJ, Wrathall JR (1987) An inexpensive apparatus for producing graded spinal cord contusive injury in the rat. Exp Neurol 95:530-533.
Noyes DH (1987) Electromechanical impactor for producing experimental spinal cord injury in animals. Med Biol Eng Comput 25:335-340.
Pan YA, Misgeld T, Lichtman JW, Sanes JR (2003) Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23:11479-11488.
Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC (2006) Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci 26:13390-13399.
Sandrock AW, Jr., Matthew WD (1987) An in vitro neurite-promoting antigen functions in axonal regeneration in vivo. Science 237:1605-1608.
Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE, Jr. (2003) Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 20:179-193.
Schmidt CE, Dai J, Lauffenburger DA, Sheetz MP, Horwitz AF (1995) Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 15:3400-3407.
Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53-60.
Sharif-Alhoseini M, Khormali M, Rezaei M, Safdarian M, Hajighadery A, Khalatbari MM, Safdarian M, Meknatkhah S, Rezvan M, Chalangari M, Derakhshan P, Rahimi-Movaghar V (2017) Animal models of spinal cord injury: a systematic review. Spinal Cord 55:714-721.
Silver J, Schwab ME, Popovich PG (2015) Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. Csh Perspect Biol 7.
Somerson SK, Stokes BT (1987) Functional analysis of an electromechanical spinal cord injury device. Exp Neurol 96:82-96.
Staal JA, Dickson TC, Chung RS, Vickers JC (2007) Cyclosporin-A treatment attenuates delayed cytoskeletal alterations and secondary axotomy following mild axonal stretch injury. Dev Neurobiol 67:1831-1842.
Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC (2010) Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem 112:1147-1155.
Stirling DP, Cummins K, Wayne Chen SR, Stys P (2014) Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons. Ann Neurol 75:220-229.
Stokes BT (1992) Experimental spinal cord injury: a dynamic and verifiable injury device. J Neurotrauma 9:129-131; discussion 131-124.
Stokes BT, Noyes DH, Behrmann DL (1992) An electromechanical spinal injury technique with dynamic sensitivity. J Neurotrauma 9:187-195.
Talat Khan RMH, Scott T. Sayers, Avinash Patwardhan, William W. King (1999) Animal models of spinal cord contusion injuries. Laboratory Animal Science Vol 49, No 2.
Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233:364-372.
Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2003) Microfluidic Multicompartment Device for Neuroscience Research. Langmuir 19:1551-1556.
Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599-605.
Tecoma ES, Monyer H, Goldberg MP, Choi DW (1989) Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2:1541-1545.
Turney SG, Bridgman PC (2005) Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci 8:717-719.
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN (2016) Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 15:394-408.
Walker MJ, Walker CL, Zhang YP, Shields LB, Shields CB, Xu XM (2015) A novel vertebral stabilization method for producing contusive spinal cord injury. J Vis Exp:e50149.
Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7-18.
Williams PR, Marincu BN, Sorbara CD, Mahler CF, Schumacher AM, Griesbeck O, Kerschensteiner M, Misgeld T (2014) A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat Commun 5:5683.
Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Cheng H, Su TP (2012) Effects of age, gender, and socio-economic status on the incidence of spinal cord injury: an assessment using the eleven-year comprehensive nationwide database of Taiwan. J Neurotrauma 29:889-897.
Yap YC, Dickson TC, King AE, Breadmore MC, Guijt RM (2014) Microfluidic culture platform for studying neuronal response to mild to very mild axonal stretch injury. Biomicrofluidics 8:044110.
Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214:103-119.