簡易檢索 / 詳目顯示

研究生: 薛書翰
論文名稱: 利用共同信賴帶管制圖來監控一般線性輪廓
Monitoring General Linear Profiles Using Simultaneous Confidence Bands Schemes
指導教授: 黃榮臣
口試委員: 王秀瑛
洪志真
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 管制圖輪廓監控EWMA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的諸多產品在判斷品質的好壞或是製程的狀態可利用監控資料是否滿足某個特定函數或是曲線關係來判定,這一型態的品質資料稱之為輪廓資料。本文利用共同信賴帶和變異數轉換的概念來建構新的管制圖,並用於監控一般線性模型的輪廓資料。我們比較所提出的監控方法與現存監控方法的監控效率,並分別討論在不同製程參數改變狀況下的表現。當管制圖發生了失控警訊後,我們利用最大化一般概似比的方法來估計製程的改變點,接著利用個別的診斷檢定統計量來診斷製程模型中的那些參數發生了改變。當輪廓資料為一般線性模型時,利用共同信賴帶的管制圖,在監控製程的失控與製程改變點的估計或是判斷製程那些參數發生改變的診斷都有不錯的結果。最後我們利用一個例子來說明實際上如何操作及使用本文所提出的監控方法。


    第一章 緒論................................................1 1.1 前言...................................................1 1.2 輪廓的監控與文獻探討...................................2 1.3 研究動機與目的.........................................5 第二章 一般線性模型之輪廓監控..............................7 2.1 模型的假設.............................................7 2.2 KMW 管制圖.............................................8 2.3 MEWMA 管制圖..........................................11 2.4 共同信賴帶管制圖......................................13 2.4.1 變動的共同信賴帶管制圖..............................13 2.4.2 固定的共同信賴帶管制圖..............................15 2.4.3 變動的調整共同信賴帶管制圖..........................16 第三章 模擬結果與分析.....................................18 3.1 管制圖的比較準則......................................18 3.2 單一參數的改變........................................19 3.3 兩個參數的改變........................................22 3.4 製程改變點的估計......................................25 3.5 可歸屬原因的診斷......................................28 3.6 例子..................................................30 第四章 結論與未來的研究...................................34 參考文獻..................................................36 附表......................................................38 附圖......................................................61

    參考文獻

    Crowder, S. V., and Hamilton, M. (1992). “An EWMA for Monitoring a Process Sta- ndard Deviation”. Journal of Quality Technology 24, pp. 12-21.
    Ding, Y., Zeng, L., and Zhou, S. (2006). “Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Processes”. Journal of Quality Technology 38, pp. 199-216.
    Gupta, S., Montgomery, D. C., and Woodall, W. H. (2006). “Performance Evaluation of Two Methods for Online Monitoring of Linear Calibration Profiles”. Internati- onal Journal of Production Research 44, pp. 1927-1942.
    Hinkle, L. D. (1991). “MFC Accuracy: Is Simple Gas Correction Enough?”. Semicon- ductor International, pp. 68-69.
    Jensen, W. A., and Birch, J. B. (2009). “Profile Monitoring via Nonlinear Mixed Mo- del”. Journal of Quality Technology 41, pp.18-34.
    Kang, L., and Albin, S. L. (2000). “On-Line Monitoring When the Process Yields a Linear Profile”. Journal of Quality Technology 32, 418-426.
    Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). “On the Monitoring of Linear Profiles”. Journal of Quality Technology 35, pp. 317-328.
    Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), Continuous Multivariate Distr- ibutions (2nd ed.), New York: Wiley-Interscience.
    Mahmoud, M. A., Parker, P. A., Woodall, W. H., and Hawkins, D. M. (2007). “A Ch- ange Point Method for Linear Profile Data”. Quality and Reliability Engineering International 23, pp. 247-268.
    Mahmoud, M. A., and Woodall, W. H. (2004). “Phase I Monitoring of Linear Profiles with Calibration Application”. Technometrics 46, pp. 380-391.
    Montgomery, D. C. (2009). Introduction to Statistical Quality Control, 6th ed. John Wiley & Sons, Inc.
    Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrics 41, pp. 100-115.
    Roberts, S. W. (1959). “Control Charts Based on Geometric Moving Averages”. Tec- hnometrics 1, pp. 234-250.
    Sheriff, D. (1995). “Diagnostic Procedures Facilitate the Solving of Gas Flow Proble- ms”. Solid State Technology 38, pp. 63-69.
    Shu, L. and Jiang, W. (2008). “A New EWMA Chart for Monitoring Process Dispers- ion”. Journal of Quality Technology 40, pp. 319-331.
    Uusipaikka, E. (1983). “Exact confidence bands for linear regression over intervals”, Journal of the American Statistical Association 78, pp. 638-644.
    Wang, K., and Tsung, F. (2005). “Using Profile Monitoring Techniques for a Data-Ri- ch Environment with Huge Sample Sizes”. Quality and Reliability Engineering International 21, pp. 677-688.
    Williams, J. D., Woodall, W. H., and Birch, J. B. (2007). “Statistical Monitoring of Nonlinear Product and Process Quality Profiles”. Quality and Reliability Engin- eering International 23, pp. 925-941.
    Zou, C., Tsung, F., and Wang, Z. (2007). “Monitoring General Linear Profiles Using Multivariate Exponentially Weighted Moving Average Schemes”. Technometrics 49, pp. 395-408.
    Zou, C., Tsung, F., and Wang, Z. (2008). “Monitoring Profiles Based on Nonparame- tric Regression Methods”. Technometrics 50, pp. 512-526.
    Zou, C., Zhang, Y., and Wang, Z. (2006). “Control Chart Based on Change-Point Mo- del for Monitoring Linear Profiles”. IIE Transactions 38, pp. 1093-1103.
    Zou, C., Zhou, C., Wang, X. and Tsung, F. (2007). “A Self-Starting Control Chart for Linear Profiles”. Journal of Quality Technology 39, pp. 364-375.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE