簡易檢索 / 詳目顯示

研究生: 余德偉
De-Wei Yu
論文名稱: Mo(110)之碳化與Si(111)-7×7之化學反應
The Carburization of Mo(110) and Chemical Reactions of Si(111)-7x7
指導教授: 羅榮立
Rong-Li Lo
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 碳化鉬插排非彈性穿襚電子低能量電子繞射儀掃描探針顯微術
外文關鍵詞: carburized Mo, dislocation, inelastic tunneling electron, low energy electron diffraction, scanning tunneling microscopy
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 差排(dislocation)理論是研究晶體缺陷很有用的工具。過去多半的掃描穿隧電子顯微術(STM)實驗是以差排理論研究結構上較為簡單的面心立方晶體。這裡我們使用差排理論研究以STM在體心立方的過渡金屬Mo(110)表面上看到的表面缺陷,並討論它們合理的產生機制。
    STM可以用來觀察導電樣品表面的原子結構,而過渡金屬的表面反應性可以藉由製作碳化層來改變。搭配低能量電子繞射儀(LEED)我們成功地解出Mo(110)表面在真實空間中的不同碳化結構。隨著碳化條件的不同,表面分別會有碳原子覆蓋度為1/30、1/24和1/16 ML的(50-26)、(12×4)–2C和(4×4)的碳化結構。此外,若C2H4曝量相同但退火時間增加,表面則會隨退火時間的增加由高覆蓋度的結構轉變成低覆蓋度的結構。此現象主要是碳原子在高溫時向樣品內擴散所造成。
    STM也可以用來解析樣品對不同吸附氣體分子的反應性。甲醇和氨氣分子在與Si(111)-7×7表面進行吸附反應後,會在表面上形成兩個反應原子:一個矽adatom及其最近鄰的矽rest atom。由STM影像統計出氣體吸附前後表面影像對比有明顯變化位置的數量後,可以得到不同原子位置的氣體吸附比例,進而研究不同位置的矽原子跟這些氣體分子的反應活性。STM可以掃描模式使吸附在樣品表面的分子產生分解。當樣品偏壓低於-1.5 V時,吸附在Si(111)-7×7上的氨氣分子會被非彈性穿隧電子分解,計算氨氣分子在非彈性電子穿隧效應下的產率或是分解速率可以研究氨氣分子在矽表面的分解機制,有助於探討氮化矽薄膜的生成機制。


    Dislocation theory is a powerful tool in the investigation of crystal defects. In the past dislocation theory was adopted to explain the results of scanning tunneling microscopy (STM) experiments on face-centered crystal surfaces. Here, we used the STM observations and dislocation theory to investigate the surface defects on body-centered cubic transition metal Mo(110) surface, and discussed the reasonable formation mechanism of them.
    STM can be used to resolve the surface structures of conductive samples. On the other hand, the surface reactivity of transition metal can be modified by forming carbide structures. Combining STM with low energy electron diffraction (LEED), we successfully determined three carbide structures on the Mo(110) surface. By different carburization conditions, the coverages of carbon of structures (50-26), (12×4)–2C and (4×4) formed on the Mo(110) surface are 1/30, 1/24 and 1/16 ML, respectively. Besides, increasing the annealing time will change a high-coverage structure to a low-coverage one. This is caused by the inward diffusion of carbon atoms at high temperatures.
    STM can also be used to observe the reactivity of the surface toward different adsorption molecules. When a methanol or an ammonia molecule interacts with the Si(111)-7×7 surface, two reacted sites will be produced: a Si adatom and its nearest neighboring rest atom. Comparing the STM images, prior to and after the exposure of gas molecule, and counting the reacted sites, we obtained the reacted ratio of different adsorption sites. Thus, the reactivities toward gaseous molecule between different Si atom sites can be studied. Furthermore, the dissociation of adsorbed molecules can be stimulated by a scanning STM tip. At sample voltages lower than □1.5 V, the absorbed ammonia molecules on the Si(111)-7×7 surface can be dissociated by the inelastic tunneling electrons. By counting the dissociation yield or rate of NH3 molecules by inelastic tunneling electrons, the dissociation mechanism of NH3 on the surface can be investigated, and this investigation is useful in interpretation of the growth mechanism of silicon nitride thin film on Si(111)-7×7 surface.

    1. Introduction 3 2. Defects on body-centered cubic Mo(110) surface 5 2.1 Introduction …………………………………………...5 2.2 Basic dislocation theory ………………………………6 2.3 Preparation of Mo(110) sample ……………………...19 2.4 Results and discussion ……………………………….20 2.5 Conclusions ………………………………………….29 3. Determination of carbide structures on Mo(110) surface by STM and LEED 30 3.1 Introduction ………………………………………….30 3.2 Experiment details …………………………………...31 3.3 Results and discussion ……………………………….32 3.4 Conclusions ………………………………………….45 4. Chemical reactions of Si(111)-7×7 with methanol and ammonia molecules 47 4.1 Introduction ………………………………………….47 4.2 Experiment details …………………………………...48 4.3 Results and discussion ……………………………….48 4.3.1 Methanol adsorption on Si(111)-7×7 ……….48 4.3.2 Ammonia adsorption on Si(111)-7×7 ………56 4.4 Conclusions ………………………………………….62 5. Conclusions and prospects 64

    [1] P. Avouris, and R. Wolkow, Phys. Rev. B 39, 5091 (1989). “Atom-resolved surface chemistry studied by scanning tunneling microscopy and spectroscopy”.
    [2] F. Calleja, A. Arnau, J. J. Hinarejos, A. L. V. de Parga, W. A. Hofer, P. M. Echenique, and R. Miranda, Phys. Rev. Lett. 92, 206101 (2004). “Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy”.
    [3] G. Dujardin, F. Rose, J. Tribollet, and A. J. Mayne, Phys. Rev. B 63, 081305 (2001). “Inelastic transport of tunnel and field-emitted electrons through a single atom”.
    [4] J. Engbæk, J. Schiøtz, B. Dahl-Madsen, and S. Horch, Phys. Rev. B 74, 195434 (2006). “Atomic structure of screw dislocations intersecting the Au(111) surface: A combined scanning tunneling microscopy and molecular dynamics study”.
    [5] K. Fukui, R.-L. Lo, S. Otani, and Y. Iwasawa, Chem. Phys. Lett. 325, 275 (2000). “Novel selective etching reaction of carbon atoms on molybdenum carbide by oxygen at room temperature visualized by scanning tunneling microscopy”.
    [6] R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986). “Surface electronic structure of Si (111)-(7×7) resolved in real space”.
    [7] R.-L. Lo, K. Fukui, S. Otani, S. T. Oyama, and Y. Iwasawa, Jpn. J. Appl. Phys. 38, 3813 (1999). “C-terminated reconstruction and C-chain structure on Mo2C(0001) surface studied by low energy electron diffraction and scanning tunneling microscopy”.
    [8] R.-L. Lo, C.-M. Chang, and M.-S. Ho, Phys. Rev. B 76, 113305 (2007). “NH2 and NH bonding sites determined by STM-induced activation on the NH3-reacted Si(111)-7×7 surface”.
    [9] R.-L. Lo, K. Fukui, S. Otani, and Y. Iwasawa, Surf. Sci. 440, L857 (1999). “High resolution images of Mo2C(0001)-( × )R30° structure by scanning tunneling microscopy”.
    [10] R.-L. Lo, M.-S. Ho, I.-S. Hwang, and T. T. Tsong, Phys. Rev. B 58, 9867 (1998). “Diffusion by bond hopping of hydrogen atoms on the Si(111)-7×7 surface”.
    [11] M. N. Piancastelli, N. Motta, A. Sgarlata, A. Balzarotti, and M. de Crescenzi, Phys. Rev. B 48, 17892 (1993). “Topographic and spectroscopic analysis of ethylene adsorption on Si(111)7×7 by STM and STS”.
    [12] M. A. Rezaei, B. C. Stipe, and W. Ho, J. Chem. Phys. 110, 4891 (1999). “Atomically resolved adsorption and scanning tunneling microscope induced desorption on a semiconductor: NO on Si(111)-(7×7)”.
    [13] K. Tanaka, Y. Nomoto, and Z.-X. Xie, J. Chem. Phys. 120, 4486 (2004). “Dissociation mechanism of 2-propanol on a Si(111)-(7×7) surface studied by scanning tunneling microscopy”.
    [14] K. Tanaka, and Z.-X. Xie, J. Chem. Phys. 122, 054706 (2005). “Adsorption kinetics and patterning of a Si(111)-(7×7) surface by dissociation of methanol”.
    [15] Z.-X. Xie, Y. Uematsu, X. Lu, and K. Tanaka, Phys. Rev. B 66, 125306 (2002). “Dissociation mechanism of methanol on a Si(111)-(7×7) surface studied by scanning tunneling microscopy”.
    [16] J. Yoshinobu, D. Fukushi, M. Uda, E. Nomura, and M. Aono, Phys. Rev. B 46, 9520 (1992). “Acetylene adsorption on Si(111)(7×7): A scanning tunneling microscopy study”.
    [17] D. D. Chambliss, R. J. Wilson, and S. Chiang, Phys. Rev. Lett. 66, 1721 (1991). “Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations”.
    [18] J. de la Figuera, C. B. Carter, N. C. Bartelt, and R.-Q. Hwang, Surf. Sci. 531, 29 (2003). “Interplay between gas adsorption and dislocation structure on a metal surface”.
    [19] J. de la Figuera, M. A. Gonza´lez, R. Garcı´a-Martı´nez, and J. M. Rojo, Phys. Rev. B 58, 1169 (1998). “STM characterization of extended dislocation configurations in Au(001)”.
    [20] J. de la Figuera, K. Pohl, O. R. de la Fuente, A. K. Schmid, N. C. Bartelt, C. B. Carter, and R. Q. Hwang, Phys. Rev. Lett. 86, 3819 (2001). “Direct observation of misfit dislocation glide on surfaces”.
    [21] J. de la Figuera, K. Pohl, A. K. Schmid, N. C. Bartelt, and R. Q. Hwang, Surf. Sci. 415, L993 (1998). “ Linking dislocation dynamics and chemical reactivity on strained metal films”.
    [22] O. R. de la Fuente, J. A. Zimmerman, M. A. Gonza´lez, J. de la Figuera, J. C. Hamilton, W.-W. Pai, and J. M. Rojo, Phys. Rev. Lett. 88, 036101 (2002). “Dislocation emission around nanoindentations on a (001) f.c.c. metal surface studied by scanning tunneling microscopy and atomistic simulations”.
    [23] E. Lundgren, B. Stanka, W. Koprolin, M. Schmid, and P. Varga, Surf. Sci. 423, 357 (1999). “An atomic-scale study of the Co induced dendrite formation on Pt(111)”.
    [24] T. Michely and G. Comsa, J. Vac. Sci. Technol. B 9, 862 (1991). “Sputtering damage in the Pt(111) surface by He+ ion bombardment”.
    [25] Theory of dislocations, edited by J. P. Hirth, and J. Lothe (John Wiley & Sons press, 1982).
    [26] Introduction to dislocations, 3rd Edition, edited by D. Hull, and D. J. Bacon (Pergamon press, 1985).
    [27] Dislocations in solids: vol. 2. Dislocations in crystals, edited by F. R. N. Nabarro (North-Holland press, 1979).
    [28] Dislocations in solids: vol. 1. The elastic theory, edited by F. R. N. Nabarro, (North-Holland press, 1979).
    [29] J. G. Chen, Chem. Rev. 96, 1477 (1996). “Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities”.
    [30] B. Frühberger, and J. G. Chen, Surf. Sci. 342, 38 (1995). “Modification of the surface reactivity of Mo(110) upon carbide formation”.
    [31] B. Frühberger, and J. G. Chen, J. Am. Chem. Soc. 118, 11599 (1996). “Reaction of ethylene with clean and carbide-modified Mo(110): Converting surface reactivities of molybdenum to Pt-group metals”.
    [32] M. Carbone, M. N. Piancastelli, R. Zanoni, G. Comtet, G. Dujardin, and L. Hellner, Surf. Sci. 370, L179 (1997). “Methanol adsorption on Si(111)-(7×7), investigated by core-line photoemission and mass spectrometry of photodesorbed ions”.
    [33] M. Carbone, R. Zanoni, M. N. Piancastelli, G. Comtet, G. Dujardin, and L. Hellner, Surf. Sci. 352, 391 (1996). “Synchrotron radiation photoemission and photostimulated desorption of deuterated methanol on Si(111)7×7 and Si(100)2×1”.
    [34] K. Edamoto, Y. Kubota, M. Onchi, and M. Nishijima, Surf. Sci. 146, L533 (1984). “Observation of methoxy species on the Si(111)(7×7) surface: A vibrational study”.
    [35] S. C. Jung, and M. H. Kang, J. Korean. Phys. Soc. 51, 130 (2007). “Site-selective chemisorption of CH3OH on Si(111)-(7×7): Density-functional theory calculations”.
    [36] M. N. Piancastelli, J. J. Paggel, C. Weindel, M. Hasselblatt, and K. Horn, Phys. Rev. B 56, R12737 (1997). “Assignment of rest-atom surface core-level shift through adsorption-site selectivity of methoxy on Si(111)-7×7”.
    [37] P. Sonnet, L. Stauffer, M. Habar, and C. Minot, Surf. Sci. 577, 15 (2005). “Molecular precursor-mediated methanol dissociation on Si(111)7×7: ab initio study”.
    [38] J. A. Stroscio, S. R. Bare, and W. Ho, Surf. Sci. 154, 35 (1985). “Reaction of methanol on Si(111)-7×7”.
    [39] X. Xu, C. Wang, Z. Xie, X. Lu, M. Chen, and K. Tanaka, Chem. Phys. Lett. 388, 190 (2004). “Adsorbate lone-pair-electron stimulated charge transfer between surface dangling bonds: Methanol chemisorption on Si(111)-7×7”.
    [40] P. J. Chen, M. L. Colaianni, and J. T. Y. Jr, Surf. Sci. 274, L605 (1992). “Silicon backbond strain effects on NH3, surface chemistry: Si(111)-(7×7) compared to Si(100)-(2×1)”.
    [41] M.-H. Kang, Phys. Rev. B 68, 205307 (2003). “Theory of the site-selective reaction of NH3 with Si(111)-(7×7)”.
    [42] X. Lu, X. Xu, N. Wang, Q. Zhang, and M. C. Lin, Chem. Phys. Lett. 355, 365 (2002). “High charge flexibility of the surface dangling bonds on the Si(111)-7×7 surface and NH3 chemisorption: A DFT study”.
    [43] X. Wang, and X. Xu, J. Phys. Chem. C 111, 16974 (2007). “Mechanisms for NH3 decomposition on the Si(111)-7×7 surface: A DFT cluster model study”.
    [44] R. Wolkow, and P. Avouris, Phys. Rev. Lett. 60, 1049 (1988). “Atom-resolved surface chemistry using scanning tunneling microscopy”.
    [45] B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Phys. Rev. Lett. 78, 4410 (1997). “Single-molecule dissociation by tunneling electrons”.
    [46] C. Sbraccia, C. A. Pignedoli, A. Catellani, R. D. Felice, P. L. Silvestrelli, F. Toigo, F. Ancilotto, and C. M. Bertoni, Surf. Sci. 557, 80 (2004). “Chemisorption sites and reaction pathways for acetylene on Si(111)-(7×7)”.
    [47] Introduction to solid state physics, 7th Edition, edited by C. Kittel (John Wiley & Sons press, 1996).
    [48] J. V. Lauritsen, M. Nyberg, R. T. Vang, M. V. Bollinger, B. S. Clausen, H. Topsøe, K. W. Jacobsen, E. Lægsgaard, J. K. Nørskov, and F. Besenbacher, Nanotechnology 14, 385 (2003). “Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters”.
    [49] K. Pohl, M. C. Bartelt, J. de la Figuera, N. C. Bartelt, J. Hrbek, and R.-Q. Hwang, Nature 397, 238 (1999). “Identifying the forces responsible for self-organization of nanostructures at crystal surfaces”.
    [50] L. J. Teutonico, Acta Met. 11, 1283 (1963). “The dissociation of dislocations in the face-centered cubic structure”.
    [51] D.-W. Yu, Y.-H. Wu, R.-B. Lin, and R.-L. Lo, J. Phys. Conden. Matt. 20, 135004 (2008). “Determination of carbide structures on an Mo(110) surface by scanning tunneling microscopy and low energy electron diffraction”.
    [52] B. E. Bent, Chem. Rev. 96, 1361 (1996). “Mimicking aspects of heterogeneous catalysis: Generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum”.
    [53] F. Zaera, Chem. Rev. 95, 2651 (1995). “An organometallic guide to the chemistry of hydrocarbon moieties on transition metal surfaces”.
    [54] R. B. Levy, and M. Boudart, Science 181, 547 (1973). “Platinum-like behavior of tungsten carbide in surface catalysis”.
    [55] H. H. Hwu, and J. G. Chen, Chem. Rev. 105, 185 (2005). “Surface chemistry of transition metal carbides”.
    [56] M. B. Young, and A. J. Slavin, Surf. Sci. 245, 56 (1991). “The adsorption of C2H4 on the Mo( 110) surface and the evolution of the surface with temperature”.
    [57] T. P. S. Clair, S. T. Oyama, D. F. Cox, S. Otani, Y. Ishizawa, R.-L. Lo, K. Fukui, and Y. Iwasawa, Surf. Sci. 426, 187 (1999). “Surface characterization of α-Mo2C (0001)”.
    [58] A. M. Bradshaw, J. F. Vanderveen, F. J. Himpsel, and D. E. Eastman, Solid State Commun. 37, 37 (1981). “Electronic-properties of the clean and hydrogen-covered TiC(111) Ti-terminated polar surface”.
    [59] M. Gsell, P. Jakob, and D. Menzel, Science 280, 717 (1998). “Effect of substrate strain on adsorption”.
    [60] P. Jakob, M. Gsell, and D. Menzel, J. Chem. Phys. 114, 10075 (2001). “Interactions of adsorbates with locally strained substrate lattices”.
    [61] Surface crystallography: An introduction to low energy electron diffraction, edited by L. J. Clarke (John Wiley & Sons, 1985).
    [62] Surface analysis, edited by J. C. Vickerman (John Wiley & Sons press, 1998).
    [63] C. L. Roe, and K. H. Schulz, Surf. Sci. 446, 254 (2000). “Reaction of ethanethiol on clean and carbon-modified Mo(110) surfaces as a function of sulfur coverage”.
    [64] C. Klink, L. Olesen, F. Besenbacher, I. Stensgaard, E. Laegsgaard, and N. D. Lang, Phys. Rev. Lett. 71, 4350 (1993). “Interaction of C with Ni(100): Atom-resolved studies of the “clock” reconstruction”.
    [65] P. Sautet, Chem. Rev. 97, 1097 (1997). “Images of adsorbates with the scanning tunneling microscope: Theoretical approaches to the contrast mechanism”.
    [66] I. S. Tilinin, M. K. Rose, J. C. Dunphy, M. Salmeron, and M. A. V. Hove, Surf. Sci. 418, 511 (1998). “Identification of adatoms on metal surfaces by STM: Experiment and theory”.
    [67] F. Rose, S. Kawai, T. Ishii, and H. Kawakatsu, Phys. Rev. B 73, 045309 (2006). “Scanning tunneling spectroscopy and topography of Si(111)-c2×8 and coexisting 7×7 and 2×1 reconstructions: Surface electronic band structure”.
    [68] K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Techn. A 3, 1502 (1985). “Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy”.
    [69] K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surf. Sci. 164, 367 (1985). “Structural analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction”.
    [70] L. Stauffer, S. Van, D. Bolmont, J. J. Koulmann, and C. Minot, Solid State Commun. 85, 935 (1993). “Non-equivalent of the adatoms in the DAS model of the Si(111)7×7 surface. An extended Huckel model calculation”.
    [71] P. Avouris, and I.-W. Lyo, Surf. Sci. 242, 1 (1991). “Probing and inducing surface chemistry with the STM: The reactions of Si(111)-7×7 with H2O and O2”.
    [72] R.-L. Lo, I.-S. Hwang, M.-S. Ho, and T.-T. Tsong, Phys. Rev. Lett. 80, 5584 (1998). “Diffusion of single hydrogen atoms on Si(111)-7×7 surfaces”.
    [73] J. W. Gadzuk, Phys. Rev. B 44, 13466 (1991). “Inelastic resonance scattering, tunneling, and desorption”.
    [74] T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science 268, 1590 (1995). “Atomic-scale desorption through electronic and vibrational excitation mechanisms”.
    [75] P. A. Sloan, M. F. G. Hedouin, and R. E. Palmer, Phys. Rev. Lett. 91, 118301 (2003). “Mechanisms of molecular manipulation with the scanning tunneling microscope at room temperature: Chlorobenzene/Si(111)-(7×7)”.
    [76] P. A. Sloan, and R. E. Palmer, Nano Lett. 5, 835 (2005). “Tip-state control of rates and branching ratios in atomic manipulation”.
    [77] L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin, Phys. Rev. B 68, 035303 (2003). “Atomic-scale desorption of H atoms from the Si(100)-2×1:H surface: Inelastic electron interactions”.
    [78] K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y.-K. Hu, F. Perez-Murano, and F. Grey, Phys. Rev. Lett. 80, 2618 (1998). “STM-induced hydrogen desorption via a hole resonance”.
    [79] Y. Kim, T. Komeda, and M. Kawai, Phys. Rev. Lett. 89, 126104 (2002). “Single-molecule reaction and characterization by vibrational excitation”.
    [80] P. A. Sloan, and R. E. Palmer, Nature 434, 367 (2005). “Two-electron dissociation of single molecules by atomic manipulation at room temperature”.
    [81] K. S. Nakayama, E. Graugnard, and J. H. Weaver, Phys. Rev. Lett. 89, 266106 (2002). “Tunneling electron induced bromine hopping on Si(100)-(2×1)”.
    [82] H. J. Lee, and W. Ho, Science 286, 1719 (1999). “Single-bond formation and characterization with a scanning tunneling microscope”.
    [83] G. P. Salam, M. Persson, and R. E. Palmer, Phys. Rev. B 49, 10655 (1994). “Possibility of coherent multiple excitation in atom transfer with a scanning tunneling microscope”.
    [84] R. E. Walkup, D. M. Newns, and P. Avouris, Phys. Rev. B 48, 1858 (1993). “Role of multiple inelastic transitions in atom transfer with the scanning tunneling microscope”.
    [85] R.-L. Lo, C.-M. Chang, I.-S. Hwang, and T.-T. Tsong, Phys. Rev. B. 73, 075427 (2006). “Observation of single oxygen atoms decomposed from water molecules on a Si(111)-7×7 surface”.
    [86] J. J. Boland, Surf. Sci. 244, 1 (1991). “The importance of structure and bonding in semiconductor surface chemistry: hydrogen on the Si(111)-7×7 surface”.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE