研究生: |
周宜良 Chou, Yi-Liang |
---|---|
論文名稱: |
應用於陣列感測光達之分流回授電阻式轉阻放大器設計 Shunt Feedback Resistor Transimpedance Amplifier for Array Sensing Lidar |
指導教授: |
謝秉璇
Hsieh, Ping-Hsuan |
口試委員: |
李泰成
Lee, Tai-Cheng 林凡異 Lin, Fan-Yi 黃元豪 Huang, Yuan-Hao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 光達 、轉阻放大器 |
外文關鍵詞: | LiDAR, TIA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文介紹了轉阻放大器(Transimpdance Amplifier)。此放大器是光接收系統中的重要樞紐,前級為感光元件,後級為受光系統,同時也是混沌脈光達系統(Chaos LiDAR System)的主要項目,當雪崩光電二極體(Avalanche Photo Diode)被光照射時會產生光電流,透過轉阻放大器將其轉換成電壓,以利後續的電路能夠以電壓訊號的方式進行處理。
我們提出的架構可驅動陣列雪崩光電二極體的寄生大電容,並且操作頻寬大於 500 MHz,同時能夠解決陣列雪崩光電二極體彼此之間的不匹配會造成 1V的擊穿電壓誤差。我們採用了 90 奈米互補式金屬氧化物半導體製程,混合使用供電3.3V和1V的電晶體,不僅能達到寬頻和解決雪崩光電二極體誤差的問題,也方便在後續整合到系統中。
設計方面,加入直流消去電路(DC cancellation circuit),使得混合使用不同供電的電晶體之設計能夠實現,也提供了高通濾波的效果,使後續系統能達到更好的訊號雜訊比(Signal-to-Noise Ratio)
This thesis introduces the transimpedance amplifier. This amplifier is an important hub in the light receiving system. The front stage is the photosensitive element and the rear stage is the light receiving system. At the same time, it is also the main project of the Chaos LiDAR system. When the avalanche photo diode is irradiated by light, it will generate photocurrent and convert it into voltage through the transimpedance amplifier, so that the subsequent circuit can process it in the form of the voltage signal.
Our proposed architecture can drive the parasitic large capacitance of the array avalanche photodiodes, and the operating bandwidth is greater than 500 MHz, and can solve the 1V breakdown voltage error caused by the mismatch between the array avalanche photodiodes. We use 90nm process and mixed use of 3.3V and 1V transistors, which can not only achieve high bandwidth and solve the problem of avalanche photodiode errors, but also facilitate subsequent integration into the system.
In terms of design, a DC cancellation circuit is added, which enables the design of mixed use of transistors with different power supplies, and also provides the effect of high-pass filtering, so that the subsequent system can achieve a better signal-to-noise ratio.
N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation
CW lidar,” Applied Optics, vol. 22, no. 9, pp. 1382-1386, May. 1983.
F.-Y. Lin and J.-M. Liu, “Chaotic Lidar,” IEEE J. Selected Topics in Quantum Electronics, vol. 10, no. 5, pp.991-997, Sep/Oct. 2004.
M. Vollmer, K.-P. Möllmann, and J. A. Shaw, “The optics and physics of
near infrared imaging,” Proc. SPIE 9793, 97930Z (2015).
A. Cevrero et al., “29.1 A 64 Gb/s 1.4 pJ/b NRZ optical-receiver datapath
in 14 nm CMOS FinFET,” IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig.Tech. Papers,Feb. 2017, pp. 482–483.
Sherif Galal and Behzad Razavi, “40-Gb/s Amplifier and ESD Protection
Circuit in 0.18-um CMOS Technology,” IEEE Journal of Solid-State Circuits,vol. 39, no. 12, pp. 2389-2396, Dec. 2004
Jun-De Jin and Shawn S. H. Hsu, “A 40-Gb/s Transimpedance Amplifier
in 0.18-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43,no. 6, pp. 1449-1457, June 2008.
Xiaojun Bi, Zhen Gu, and Qinfen Xu, “Analysis and Design of Ultra-Large Dynamic Range CMOS Transimpedance Amplifier with Automatically-
Controlled Multi-Current-Bleeding Paths,” IEEE Trans. On Circuits and
Systems I, vol. 66, no. 9, pp. 3266-3278, Sept. 2019.
S.-C. Tsou, C.-F. Li, and P.-C. Huang, “A Low-Power CMOS Linear-in-dB
Variable Gain Amplifier with Programmable Bandwidth and Stable Group
Delay,” IEEE Trans. on Circuits and Systems II, vol. 53, no. 12, pp. 1436-1440,Dec. 2006.
M. Perenzoni, et al., “A 64x64-Pixel Digital Silicon Photomultiplier Direct ToF Sensor with 100MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode with 0.14 Precision up to 6km for Spacecraft Navigation and Landing,” ISSCC Dig. Tech. Papers,pp. 118-119, Feb. 2016.
C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m
Range 10-Frame/s 340 x 96- Pixel Time-of-Flight Depth Sensor in 0.18-um CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 559-572, Feb.2013.
J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE Journal of Quantum Electronics, vol. 48, no. 2, pp. 229-236, Feb. 2012.
H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama,
"Range imaging pulsed laser sensor with two-dimensional scanning of
transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength" Optical Engineering, vol. 56(3),031216, Mar. 2017.
Christian Kromer, et al, “A Low-Power 20-GHz 52-dB Transimpedance
Amplifier in 80-nm CMOS” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 6, pp.885-894 JUNE 2004 [14] M.H. Taghavi, et al,“10-Gb/s 0.13-μm CMOS Inductorless Modfified-RGC Transimpedance Amplifier,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 6, pp.885-894 JUNE 2004
M.H. Taghavi, et al, “10-Gb/s 0.13-μm CMOS Inductorless Modfified-
RGC Transimpedance Amplifier,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 8, pp.1971-1980, AUGUST 2015
S. Ray and M. Hella, “A 30–75 dB2.5 GHz 0.13-μm CMOS receiver frontend
with large input capacitance tolerance for short-range optical ommunication,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1404–1415, Sep. 2016
P. P. Dash, G. Cowan, and O. Liboiron-Ladouceur, “Inductorless, powerlproportional, optical receiver front-end in TSMC 90 nm,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1127–1130,May 2013.