研究生: |
何智偉 Jr-Wei Ho |
---|---|
論文名稱: |
氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動 Femtosecond Chemical Reaction Dynamics in Gas Phase 1.Ultrafast Three-Body Photodissociation Dynamics of Dimethyl Sulfoxide 2.Coherent Vibrational Motion during Isomerization in Azobenzene Cation |
指導教授: |
鄭博元
Po-Yuan Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 226 |
中文關鍵詞: | 飛秒化學 、超快 、光解 、DMSO 、異構化 、光致偶氮苯 、波包 、動態學 |
外文關鍵詞: | femtochemistry, ultrafast, photodissociation, dimethyl sulfoxide, photoisomerization, azobenzene, wave packet, dynamic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩個研究主題,一是二甲基亞碸(dimethyl sulfoxide, DMSO)的三體光解機制研究,另一是關於偶氮苯(azobenzene, AZB)的異構化研究。在DMSO的光解研究中,我們觀測DMSO分子在200 nm激發下的三體光解過程。我們利用飛秒時間解析之激發-離子化探測和LIF探測分別觀測DMSO光解後的產物CH3和產物SO的成長,與飛秒動能解析飛行質譜術得到飛秒時間解析的甲基產物動能分佈,另外我們也結合理論計算來幫助我們解釋實驗結果,以期完整瞭解DMSO的三體光解過程。我們的研究結果指出當DMSO被激發至S2能態後,有一個在< 50 fs內發生在S2能態的同步三體解離的次要管道,其它主要在S2能態上有一部份在約50 fs進行直接解離產生CH3SO 與高速甲基,另一部份將內轉換至S1能態進而在350 fs解離生成CH3SO 與低速甲基。隨後CH3SO 將快速地內轉換至CH3SO ,形成具較高內能分佈的CH3SO 。上述兩個一級解離所產生的CH3SO ,有一部份具有足夠能量可以進行二次解離,而且在20~90 ps解離生成SO與慢速甲基。
在偶氮苯的研究中,我們首次利用飛秒時間解析之激發-離子化探測技術在氣相中研究AZB的異構化機制,我們發現AZB的瞬時光譜與激發脈衝能量相關,在低激發脈衝能量下所得到的瞬時光譜表示的是中性激發態的動態學表現,其實驗結果與前人的液態實驗結果一致。而在高激發脈衝能量時我們觀察到具有震盪行為的瞬時光譜,經由我們有系統的分析,我們認為這表示的是反式偶氮苯陽離子態的異構化過程的同調震盪(coherent)現象,我們認為這現象可以間接解釋S1能態可以經由N-N鍵旋轉進行異構化。
第一章
1.A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A, 104, 5660 (2000).
2.J. S. Baskin and A. H. Zewail, “Freezing atoms in motion: Principles of femtochemistry and demonstration by laser stroboscopy,” J. Chem. Edu. 78, 737 (2001)
3.M. J. Rosker, M. Dantus, A. H. Zewail, “Femtosecond Clocking of the Chemical Bond,” Science 241, 1200 (1988).
4.M. J. Rosker, M. Dantus, A. H. Zewail, “Femtosecond real-time probing of reactions. I. The technique,” J. Chem. Phys. 89, 6113 (1988).
5.M. J. Rosker, M. Dantus, A. H. Zewail, “Femtosecond real-time probing of reactions. II. The dissociation reaction of ICN,” J. Chem. Phys. 89, 6128 (1988).
6.T. S. Rose, M. J. Rosker, and A. H. Zewail, “Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions,” J. Chem. Phys. 88, 6672 (1988).
7.A. Mokhtari, P. Cong, J. L. Herek and A. H. Zewail, “Direct femtosecond mapping of trajectories in a chemical-reaction,” Nature 48, 225 (1990).
8.I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69 (2006) 1897.
9.N. E. Henriksen, “Laser control of chemical reactions,” Chem. Soc. Rev. 31, 37 (2002)
10.R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
11.H. Rabitz, “Shaped laser pulses as reagents,” Science 299, 525 (2003).
12.A . Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919 (1998).
第二章
1.Tsunami Brochure downloaded from http://www.nuance.northwestern.edu/NIFTI/.
2.A. Sennaroglu edit, “Solid-state lasers and applications,” Optical science and engineering 119.
3.From http://www.olympusmicro.com/primer/java/lasers/tsunami/index.html.
4.科儀新知128期5-18頁(第二十三卷第六期,民國九十一年六月)。
5.陳偉侃2005年博士論文與蘇夏琳2002年碩士論文
6.鄭博元教授之雷射化學講義Laser Chemistry_9.pdf.
7.TOPAS manual and http://www.lightcon.com/index.php?id=3,0,0,1,0,0.
8.W. C. Wiley, I. H. McLaren, “Time-of-Flight Mass Spectrometer with Improved Resolution,” Rev. Sci. Instrum. 26, 1150 (1955).
9.MicroMath® Scientist® for WindowsTM, Version 2.01, Copyright(c) 1986-1995, MicroMath, Inc.
第三章
1.維基媒體基金會,維基百科 自由的百科全書http://zh.wikipedia.org/wiki/二甲基亞?.
2.陳秀仁,DMSO中國化學http://www.dmso-china.com/sdp/62725/3/cp-989715.html.
3.K. Gollnick and H. Stracke, "Direct and sensitized photolysis dimethyl sulfoxide in soulution." Pure. Appl. Chem. 33, 217 (1973).
4.G. M. Thorson, C. M. Cheatum, M. J. Coffey, F. F. Crim, "Photofragment energy distributions and dissociation pathways in dimethyl sulfoxide," J. Chem. Phys. 110, 10843 (1999).
5.S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, suppl. No. 1. (1988).
6.H.-Q. Zhao, Y.-S. Cheung, D. P. Heck, C. Y. Ng, T. Tetzlaff, W. S. Jenks, "A 193-nm-laser photofragmentation time-of-flight mass spectrometric study of dimethylsulfoxide," J. Chem. Phys. 106, 86 (1997).
7.E.A. Drage, P. Cahillane, S.V. Hoffmann, N.J. Mason, P. Lim?o-Vieira, "High resolution VUV photoabsorption cross section of dimethyl sulphoxide (CH3)2SO," Chem. Phys. 331, 447 (2007).
8.X. Chen, H. Wang, B. R. Weiner, M. Hawley, H. H. Nelson, "Photodissociation of Dimethyl Sulfoxide at 193 nm in the Gas Phase," J. Phys. Chem. 97, 12269 (1993).
9.D. A. Blank, S. W. North, D. Stranges, A. G. Suits, Y. T. Lee, "Unraveling the dissociation of dimethyl sulfoxide following absorption at 193 nm," J. Chem. Phys. 106, 539 (1997).
10.R. N. Rudolph, Simon W. North, Gregory E. Hall, Trevor J. Sears, "Diode laser measurements of CD3 quantum yields and internal energy for the dissociation of dimethyl sulfoxide-d6," J. Chem. Phys. 106, 1346 (1999).
11.G. A. Amaral, I. Torres, G. A. Pino, F. J. Aoiz, L. Banares, "Photodissociation dynamics of dimethyl sulfoxide-d6 at 210 nm: experimental evidence for a prompt anisotropic CD3 channel," Chem. Phys.Lett. 386, 419 (2004).
12.G. A. Pino, I. Torres, G. A. Amaral, F. J. Aoiz, L. Banares, "UV Photodissociation Dynamics of CD3SOCD3: Photofragment Translational and Internal Energy Distribution," J. Phys. Chem. A 108, 8048 (2004).
13.K. Yamasaki, F. Taketani, S. Tomita, K. Sugiura, and I. Tokue, "Collision-Free Lifetimes of SO(B3□□□□v'= 0, 1, and 2) and Vibrational Level Dependence of Deactivation by He," J. Phys. Chem. A 107, 2442 (2003).
14.R. O. Loo, H.-P. Haerri, G. E. Hall, and P. L. Houston, "Methyl rotation, vibration, and alignment from a multiphoton ionization study of the 266 nm photodissociation of methyl iodide," J. Chem. Phys. 90, 4222 (1989).
15.J. W. Hudgens, T. G. DiGiueseppe, and M. C. Lin, "Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radicals," J. Chem. Phys. 79, 571 (1983).
16.P. Y. Cheng, D. Zhong, A. H. Zewail, "Femtosecond real-time probing of reactions .21. Direct observation of transition-state dynamics and structure in charge-transfer reactions," J. Chem. Phys. 105, 6216 (1996).
17.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, "Numerical Recipes," Cambridge University Press, New York, 1992.
18.W. K. Chen, P. Y. Cheng, "Ultrafast photodissociation dynamics of acetone at 195 nm: II. Unraveling complex three-body dissociation dynamics by femtosecond time-resolved photofragment translational spectroscopy," J. Phys. Chem. A 109, 6818 (2005).
19.N. F. Scberer, J. L. Knee, D. D. Smith: and A. H. Zewail, "Femtosecond Photofragment Spectroscopy: The Reaction ICN □ CN + I" J. Phys. Chem. 88, 5141 (1985). D. Zhong and A. H. Zewail, "Femtosecond Real-Time Probing of Reactions. 23. Studies of Temporal, Velocity, Angular, and State Dynamics from Transition States to Final Products by Femtosecond-Resolved Mass Spectrometry" J. Phys. Chem. A 102 4031 (1998).
20.M.J. Frish et. al. Gaussian 03, Revision C.02, Version 6.0, Gaussian Inc., Wallingford CT, 2004.
21.V. Typke, and M. Dakkouri. "The force field and molecular structure of dimethylsulfoxide from spectroscopic and gas electron diffraction data and ab initio calculations," J. Mol. Struc. 559, 177 (2001).
22.National Institude of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release, http://webbook.nist.gov/chemistry/.
23.A. E. Reed, and P. v. R. Schleyer. "Chemical Bonding in Hypervalent Molecules. The Dominance of Ionic Bonding and Negative Hyperconjugation over d-Orbital Participation," J. Am. Chem. Soc. 112, 1434 (1990).
24.J. B. Foresman and ?. Frisch, "Exploring Chemistry with Electronic Structure Methods," 2nd ed. (Gaussian, Inc., Pittsburgh, PA, 1996).
25.J. W. Gubbage, and W. S. Jenks, "Computational Studies of the Ground and Excited State Potentials of DMSO and H2SO: Relevance to Photostereomutation," J. Phys. Chem. A 105, 10588 (2001).
26.V. P. Mond?jar, M. J. Yus?, I. G. Cuesta, A. M. J. S?nchez de Mer?s, J. S-Mar?n, "Vertical excitation energies to valence states of DMS and DMSO," Theor Chem Account 118, 527 (2007)
27.K. Nishikida and F. Williams, "Angular Dependence of Proton Hyperfine Splittings in the Electron Spin Resonance Spectrum of the Methylsulfinyl Radical," J. Am. Chem. Soc. 96 (1974) 4781.
28.J. L. Weisman and M. H.-Gordon, "Origin of Substituent Effects in the Absorption Spectra of Peroxy Radicals: Time Dependent Density Functional Theory Calculations," J. Am. Chem. Soc. 123 (2001) 11686.
29.E. W.-G. Diau, C. K?tting, T. I. S?lling, and A. H. Zewail. "Femtochemistry of Norrish Type-I Reactions: III Highly Excited Ketones-Theoretical." CHEMPHYSCHEM 3, 57 (2002).
30.W.-. Hung, M.-y Shen, Y.-P Lee, N.-S. Wang, and B.-M. Cheng "Photoionization spectra and ionization thresholds of CH3SO, CH3SOH, and CH3SS(O)CH3," J. Chem. Phys. 105, 7402 (1996).
31.W. K. Chen, J. W. Ho, and P. Y. Cheng "Ultrafast Photodissociation Dynamics of Acetone at 195 nm: I. Initial-state, Intermediate, and Product Temporal Evolutions by Femtosecond Mass-Selected Multiphoton Ionization Spectroscopy," J. Phys. Chem. A 109, 6805, (2005).
32.G. E. Busch and K. R. Wilson, "Triatomic Photofragment Spectra. I. Energy Partitioning in NO2 Photodissociation," J. Chem. Phys. 56, 3626 (1972).
33.A. F. Tuck, "Molecular-beam studies of ethyl nitrite photodissociation," J. Chem. Soc.-Faraday Transactions II 73, 689 (1977).
34.S. W. North, D. A. Blank, J. D. Gezelter, C. A. L., and Y. T. Lee. "Evidence for stepwise dissociation dynamics in acetone at 248 and 193 nm," J. Chem. Phys. 102, 4447 (1995).
35.M. J. Rosker, M. Dantus, and A. H. Zewail, "Femtosecond real-time probing of reaction. I. The technique," J. Chem. Phys. 89, 6113 (1988).
36.C. Clerbaux and R. Colin. "A reinvestigation of A3□-X3□□□transition of the SO radical." J. Mol. Spec. 165, 334 (1994).
37.D. M. Medvedev, L. B. Harding and S. K. Gray, "Methyl radical: ab initio global potential surface, vibrational levels and partition function," Mol. Phys. 104 (2006) 73.
38.Y. Liu, L. L. Lohr, and J. R. Barker, "Quasiclassical Trajectory Simulations of OH(v)+NO2□HONO2*□OH(v□)+NO2: Capture and Vibrational Deactivation Rate Constants;" J. Phys. Chem. A 110, 1267 (2006).
39.D. Bingemann, M. P. Gorman, A. M. King, F. F. Crim, "Time-resolved vibrationally mediated photodissociation of HNO3: Watching vibrational energy flow," J. Chem. Phys. 107, 661 (1997).
40.K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, "Photodissociation dynamics of acetone at 193 nm: Photofragment internal and translational energy distributions," J. Chem. Phys. 107, 661 (1997).
第四章
1.T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seotz, H. E. Gaub, "Single-molecule optomechanical cycle," Science 296, 1103 (2002).
2.T. Muraoka, K. Kinbara, Y. Kobayashi, and T. Aida, "Light-driven open-close motion of chiral molecular scissors," J. Am. Chem. Soc. 125, 5612 (2003).
3.S. K. Yesodhaa, C. K. S. Pillaia, N. Tsutsumi, "Stable polymeric materials for nonlinear optics: a review based on azobenzene systems," Prog. Polym. Sci. 29, 45 (2004).
4.H. Rau, "Photochromism: Molecules and systems," H. D?rr, H. Buas-Laurent, Eds.; Elsevier: Amsterdam, pp 165-191 (1990).
5.S. Monti, G. Orlandi, P. Palmieri, "Features of the photochemically active state surfaces of azobenzene" Chem. Phys. 71, 87 (1982).
6.a) I. K. Lednev, T.-Q. Ye, R. E. Hester, J. N. Moore, "Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of trans-Azobenzene in Solution" J. Phys. Chem. 100, 13338 (1996). b)I. K. Lednev, T.-Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, J. N. Moore, "Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: depend on excitation wavelength" Chem. Phys. Lett. 290, 68 (1998).
7.T. Fujino, S. Yu. Arzhantsev, T. Tahara, "Femtosecond/Picosecond Time-Resolved Spectroscopy of trans-Azobenzene:Isomerization Mechanism Following S2( *)□0 Photoexcitation" Bull. Chem. Soc. Jpn. 75, 1031 (2002).
8.T. Fujino, S. Yu. Arzhantsev, T. Tahara, "Femtosecond time-resolved fluorescence study of photoisomerization of trans-azobenzene" J. Phys. Chem. A 105, 8123 (2001).
9.C. Ciminelli, G. Granucci, and M. Persico, "The photoisomerization mechanism of azobenzene: A semiclassical simulation of nonadibatic dynamics," Chem. Eur. J 10, 2327 (2004).
10.T. Fujino, T. Tahara, "Picosecond time-resolved raman study of trans- azobenzene" J. Phys. Chem. A 104, 4203 (2000).
11.T. Schultz, J. Quenneville, B. Levine, A. Toniolo, T. J. Mart?nez, S. Lochbrunner, M. Schmitt, J. P. Schaffer, M. Z. Zgierski, A. Stolow, "Mechanism and dynamics of azobenzene photoisomerization" J. Am. Chem. Soc. 125, 8098 (2003).
12.T. Schultz, S. Ullrich, J. Quenneville, T. J. Mart?nez, M. Z. Zgierski, A. Stolow, "Azobenzene photoisomerization: Two states and two relaxation pathways explain the violation of Kasha's rule" Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science Elsevier, p45 (2004).
13.C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, "Photoisomerization dynamics of azobenzene in solution with S1 excitation: A femtosecond fluorescence anisotropy study," J. Am. Chem. Soc. 126, 10109 (2004).
14.C. M. Stuart, R. R. Frontiera, and R. A. Mathies, "Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis," J. Phys. Chem. A, 111, 12072 (2007).
15.a)T. Fujino, T. Tahara, "Picosecond time-resolved raman study of trans- azobenzene" J. Phys. Chem. A 104, 4203 (2000). b)T. Fujino, S. Yu. Arzhantsev, T. Tahara, "Femtosecond time-resolved fluorescence study of photoisomerization of trans-azobenzene" J. Phys. Chem. A 105, 8123 (2001).
16.Y.-C. Lu, C.-W. Chang, E. W.-G. Diau, "Femtosecond fluorescence dynamics of trans-azobenzene in hexane on excitation to the S1(n, *) State," J. Chin. Chem. Soc. 49, 693 (2002).
17.T. Fujino, S. Yu. Arzhantsev, T. Tahara, "Femtosecond/picosecond time-resolved spectroscopy of trans-azobenzene: Isomerization mechanism following S2( *)□0 photoexcitation" Bull. Chem. Soc. Jpn. 75, 1031 (2002).
18.a)H. Satzger, C. Root, and M. Braun, "Excited-state dynamics of trans- and cis- azobenzene after UV Excitation in the * band" J. Phys. Chem. A 108, 6265 (2004). b) H. Satzger, S. Sp?rlein, C. Root, J. Wachtveitl, W. Zinth, P. Gilch, "Fluorescence spectra of trans- and cis-azobenzene - emission from the Franck-Condon state" Chem. Phys. Lett. 372, 216 (2003).
19.T. N?gele, R. Hoche, W. Zinth, J. Wachtveitl, "Femtosecond photoisomerization of cis-azobenzene," Chem. Phys. Lett. 272, 489 (1997).
20.H. Satzger, S. Sp?rlein, C. Root, J. Wachtveitl, W. Zinth, P. Gilch, "Fluorescence spectra of trans- and cis-azobenzene - emission from the Franck-Condon state" Chem. Phys. Lett. 372, 216 (2003).
21.J. Andersson, R. Petterson and L. Tegn?r, "Flash photolysis experiments in the vapour phase atelevated temperatures I: spectra of azobenzene and the kinetics of its thermal cis-trans isomerization," J. Photochem. 20, 17 (1982).
22.V. V. Redchenko, T. I. Egorova, "Photoelectron spectroscopy: Study of the electronic structure of azobenzene and several of its derivatives," J. Appl. Spec. 29, 858 (1978).
23.P. Natalis and J. L-Franklin, "Ionization and dissociation of diphenyl and condensed ring aromatics by electron impact. III. Azobenzene," International J. Mass Spec. and Ion Phys. 40, 35 (1981).
24.J. S. Baskin, P. M. Felker, and A. H. Zewail, "Purely rotational coherence effect and time-resolved sub-Doppler spectroscopy of large molecules. II. Experimental," J. Chem. Phys. 86, 2483 (1987).
25.P. M. Felker, and A. H. Zewail, "Purely rotational coherence effect and time-resolved sub-Doppler spectroscopy of large molecules. I. Theoretical," J. Chem. Phys. 86, 2460 (1987).
26.D. H. Paik, J. S. Baskin, N. J. Kim, and A. H. Zewail, "Ultrafast vectorial and scalar dynamics of ionic clusters:Azobenzene solvated by oxygen," J. Chem. Phys. 125, 133408 (2006).
27.N. Biswas, and S. Umapathy, "Wavepacket dynamics studies on trans-azobenzene: absorption spectrum and resonance Raman excitation profiles of the n- * transitions," Chem. Phys. Lett. 236, 24 (1995).
28.A. Biancalana, E. Campani, G. Di Domenico, G. Gorini, and G. Masetti, "Resonance raman investigation of trans-azobenzene in the lowest energy 1Au excited state," J. Raman Spec. 24, 43 (1993).
29.G. Marconi and J. Houben, "Magnetic circular dichroism spectra of azobenzene and its 4-amino and 4-nitro derivatives" J. Chem. Soc. Faraday Trans. 2 81, 975 (1985).
30.R. M. Bowmanm M. Dantus, A. H. Zewail, "Femtosecond transition-state spectroscopy of iodide- from strongly bound to repulsive surface dynamics," Chem. Phys. Lett. 166, 297 (1989).
31.C. Su, J.-Y. Lin, R.-M. R. Hsieh, and P.-Y Cheng, "Coherent vibrational motion during the excited-state intramolecular proton transfer reaction in o-hydroxyacetophenone," J. Phys. Chem. A, 106, 11997 (2002).
32.Q.Wang, R. W. Schoenlein, L. A. Peteaanu, R. A. Mathies, C. V. Shank, "Vibational coherent Photochemistry in the Femtosecond Primary Event of Vision" Science 21, 422 (1994).
33.(a) J. M. Smith, and J. L. Knee, "Threshold ionization spectroscopy of the low frequency vibrational modes of styrene and trans-stilbene cations," Laser Chem. 14, 131 (1994).(b) T. Suzuki, N. Mikami, and M. Ito, "Two-color stimulated emission spectroscopy of trans-stilbene: large amplitude torsional motion in the ground state and its role in intramolecular vibrational redistribution," J. Phys. Chem. 90, 6431 (1986).
34.Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
35.L. Briquet, D.P. Vercauteren, E. A. Perp?te, D. Jacquemin, "Is solvated trans-azobenzene twisted or planar?" Chem. Phys. Lett. 417, 190 (2006).
36.M. Traetteberg, I. Hillmo and K. Hagen, "A gas electron diffraction study of the molecular structure of trans-azobenzene, J. Mol. Struct. 39, 231 (1977).
37.T. Tsuji, H. Takashima, H. Takeuchi, T. Egawa, S. Konaka, "Molecular structure and torsional potential and trans-azobenzene. A gas electron diffraction study" J. Phys. Chem. A 105, 9347 (2001).
38.A. E. Reed, L. A. Curtiss, F. Weinhold, "Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint," Chem. Rev. 88, 899 (1988).
39.N. E. Petrachenko, V. I. Vovna, "Photoelectrom HeI spectra of fluorinated azo- and azoxy-benzenes," J. Fluorine Chem. 63, 85 (1993).
40.V. V. Redchenko, T. I. Egorova, "Photoelectron spectroscopy: Study of the electronic structure of azobenzene and several of its derivatives," J. Appl. Spec. 29, 858 (1978).
41.MicroMath? Scientist? for WindowsTM, Version 2.01, Copyright(c) 1986-1995, MicroMath, Inc.
42.S. Milleeiori and A. Milleeiori, "Spectroscopic and electrochemical properties of para-methoxyazobenzene derivatives," J. Chem. Soc., Faraday Trans. 2, 77, 245 (1981).