簡易檢索 / 詳目顯示

研究生: 王俊傑
Jun-Jay Wang
論文名稱: 在平面圖上尋找兩條不共點且長度有限制的路徑之改良演算法
An Improved Algorithm for Finding Two Length-Bounded Vertex-Disjoint Paths in Planar Graphs
指導教授: 王炳豐
Biing-Feng Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 24
中文關鍵詞: 平面圖無界限的區域傳輸策略路由器可靠度
外文關鍵詞: planar graphs, pseudo-polynomial time algorithm, unbounded face, vertex-disjoint paths
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 令 G = (V, E) 為一個無向的平面圖 (undirected planar graph),每一個edge都有一個非負整數的長度 (length),(r1, s1) 和 (r2, s2)是兩組成對且相異的點.而這些點都跟無界限的區域 (unbounded face) 相鄰,最後再給另外兩個正整數b1, b2.令L = max{b1, b2}.在這篇論文中我們要探討的問題是如何在平面圖中尋找兩條點相異且長度有限制的路徑 (problem of finding two length-bounded vertex-disjoint paths in planar graphs),這個問題常常被應用在設計網路的傳輸策略 (routing strategy),一般來說,當我們傳輸兩個以上的封包時,我們不希望這些封包會同時傳給同一個路由器 (router),並且我們也不希望這些封包花太多的時間到達目的地.能不能找到這樣的傳輸路徑對網路的可靠度(reliability)是一個重要的因素.
    這個問題已經在2002年時被Holst 和 Pina證明了是NP-Hard,在同一篇論文中他們同時也對這個問題提出一個利用dynamic-programming技術來解決這個問題,這個演算法需要花 O(|V|^4*L^2) 時間.
    我們這篇論文對同樣的一個問題提出了一個更有效率的演算法,這個新的演算法同樣也是利用dynamic-programming技術,這個改良過後的演算法只需要花O(|V|^3*L^2) 時間.跟Holst和Pina的結果相比,我們的演算法有較好的時間複雜度.


    Let G = (V, E) be an undirected planar graph embedded in R2 with vertex set V and edge set E. Each edge e□E has a non-negative integral length l(e). Let (r1, s1) and (r2, s2) be two distinct pairs of vertices of G adjacent to the unbounded face. Let b1 and b2 be two positive integers. Given G, (r1, s1), (r2, s2), b1 and b2, we consider the problem of finding two vertex-disjoint paths P1 and P2 such that Pi is a path from ri to si and the length of Pi is at most bi for i = 1, 2.

    Previously, Holst and Pina [18] proposed a pseudo-polynomial time algorithm for this problem, which takes O(|V|^4*L^2) time, where L=max{b1, b2}. In this thesis, an improved algorithm is proposed. The proposed algorithm requires O(|V|^3*L^2) time.

    Abstract i Contents ii List of Figures iii List of Tables iv Chapter 1 Introduction 1 1.1 Problem Definition 1 1.2 Application 3 1.3 Preliminaries 4 1.4 Contribution 6 1.5 Related Work 6 Chapter 2 Holst and Pina’s Algorithm 11 Chapter 3 An Improved Algorithm 15 Chapter 4 Conclusion and Future Work 19 References 20

    [1] T. Bohman, A. M. Frieze, “Arc-disjoint Paths in Expander Digraphs,” SIAM Journal on Computing, vol. 32(2), pp. 326-344, 2003.
    [2] U. Brandes, G. Neyer and D. Wagner, “Edge-Disjoint Paths in Planar Graphs with Short Total Length,” Technical Report, Department of Computer and Information Science, University of Konstanz, 1996.
    [3] U. Brandes, D. Wagner, “A Linear Time Algorithm for the Arc Disjoint Menger Problem in Directed Planar Graphs,” Algorithmica, vol. 28(1), pp. 16-36, 2000.
    [4] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “An Efficient Algorithm for the Vertex-Disjoint Paths Problem in Random Graphs,” in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 261-268, 1996.
    [5] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “Optimal Construction of Edge-Disjoint Paths in Random Graphs,” SIAM Journal on Computing, vol. 28(2), pp. 541-573, 1998.
    [6] W. T. Chan, F. Y. L. Chin, “Efficient Algorithms for Finding the Maximum Number of Disjoint Paths in Grids,” Journal of Algorithms, vol. 34(2), pp.337-369, 2000.
    [7] W. T. Chan, F. Y. L. Chin, H. F.Ting, “Escaping a Grid by Edge-Disjoint Paths,” Algorithmica, vol. 36(4), pp. 343-359, 2003.
    [8] C. Chekuri, S. Khanna, “Edge Disjoint Paths Revisited,” in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.628-637, 2003.
    [9] T. Erlebach and K. Jansen, “The Maximum Edge-Disjoint Paths Problem in Bidirected Trees,” SIAM Journal on Discrete Mathematics, vol.14(3), pp. 326-355, 2001.
    [10] A. Frank, T. Ibaraki, H. Nagamochi, “Two Arc-Disjoint Paths in Eulerian Digraphs,” SIAM Journal on Discrete Mathematics, vol. 11(4), pp. 557-589, 1998.
    [11] A. M. Frieze, “Edge-Disjoint Paths in Expander Graphs,” SIAM Journal on Computing, vol. 30(6), pp.1790-1801, 2000.
    [12] J. S. Fu, G. H. Chen, D. R. Duh, “Node-disjoint Paths and Related Problems on Hierarchical Cubic Networks,” Networks, vol. 40(3), pp. 142-154, 2002.
    [13] Q. P. Gu, S. Peng, “Algorithms for Node Disjoint Paths in Incomplete Star Networks,” in Proceedings of the 1994 International Conference on Parallel and Distributed Systems, pp. 296-303.
    [14] Q.P. Gu, S. Peng, “An Efficient Algorithm for k-Pairwise Disjoint Paths in Star Graphs,” Information Processing Letters, vol. 67(6), pp. 283-287, 1998.
    [15] Qian-Ping Gu, Shietung Peng, “An Efficient Algorithm for the k-Pairwise Disjoint Paths Problem in Hypercubes,” Journal of Parallel Distributed Computing, vol. 60(6), pp. 764-774, 2000.
    [16] Q. P. Gu, H. Tamaki, “Routing a Permutation in the Hypercube by Two Sets of Edge Disjoint Paths,” Journal of Parallel Distributed Computing, vol. 44(2), pp. 147-152, 1997.
    [17] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, M. Yannakakis, “Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems,” Journal of Computer and System Science, vol. 67(3), pp. 473-496, 2003.
    [18] H. V. D. Holst and J. C. D. Pina, “Length-Bounded Disjoint Paths in Planar Graphs,” Discrete Applied Mathematics, vol. 120, pp. 251-261, 2002.
    [19] S. Khuller, S. G.. Mitchell, V. V. Vazirani, “Processor Efficient Parallel Algorithms for the Two Disjoint Paths Problem and for Finding a Kuratowski Homeomorph,” SIAM Journal on Computing, vol. 21(3), pp. 486-506, 1992.
    [20] K. Kaneko, Y. Suzuki, “Node-to-Node Internally Disjoint Paths Problem in Bubble-Sort Graphs,” in Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 173-182, 2004.
    [21] J. M. Kleinberg, É. Tardos, “Disjoint Paths in Densely Embedded Graphs,” in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 52-61, 1995.
    [22] J. M. Kleinberg, E. Tardos, “Approximations for the Disjoint Paths Problem in High-Diameter Planar Networks,” Journal of Computer and System Science, vol. 57(1), pp. 61-73, 1998.
    [23] E. Korach, A. Tal, “General Vertex Disjoint Paths in Series-Parallel Graphs,” Discrete Applied Mathematics, vol. 41(2), pp. 147-164, 1993.
    [24] C. N. Lai, G. H. Chen, D. R. Duh, “Constructing One-to-Many Disjoint Paths in Folded Hypercubes,” IEEE Transactions on Computers, vol. 51(1), pp. 33-45, 2002.
    [25] C. Li, S. T. McCormick, D. Simchi-Levi, “The Complexity of Finding Paths with Min-Max Objective Function,” Discrete Applied Mathematics, vol. 26 pp. 105-115, 1990.
    [26] M. Middendorf, F. Pfeiffer, “On the complexity of the disjoint paths problems,” Combinatorica, vol. 13(1), pp. 97-107, 1993.
    [27] T. Nishizeki, J. Vygen, X. Zhou, “The edge-disjoint paths problem is NP-complete for series-parallel graphs,” Discrete Applied Mathematics, vol. 115(1-3), pp. 177-186, 2001.
    [28] H. Ripphausen-Lipa, D. Wagner and K. Weihe, “The Vertex-Disjoint Menger Problem in Planar Graphs,” SIAM Journal on Computing, vol. 26, pp. 331-349, 1997.
    [29] A. Schrijver, “Finding k Disjoint Paths in a Directed Planar Graph,” SIAM Journal on Computing, vol. 23, pp. 780-788, 1994.
    [30] A. Slivkins, “Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs,” in Proceedings of the 11th Annual European Symposium on Algorithms, pp. 482-493, 2003.
    [31] M. Y. Su, H. L. Huang, G.. H. Chen, D. R. Duh, “Node-Disjoint paths in incomplete WK-recursive networks,” Parallel Computing, vol. 26(13-14):, pp. 1925-1944, 2000.
    [32] J. W. Suurballe and R.E. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,” Networks, vol 14, pp. 325-336, 1984.
    [33] K. R. Varadarajan, G. Venkataraman, “Graph decomposition and a greedy algorithm for edge-disjoint paths,” in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379-380, 2004.
    [34] J. Vygen, “NP-completeness of some edge-disjoint paths problems,” Discrete Applied Mathematics, vol. 61, pp.83-90, 1995.
    [35] D. Wagner and K. Weihe, “A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs,” Combinatorica, vol 15 (1), pp. 135-150, 1995.
    [36] K. Weihe, ”Edge-Disjoint (s,t)-Paths in Undirected Planar Graphs in Linear Time,” Journal of Algorithms, vol. 23, pp. 121-138, 1997.
    [37] H. Yinnone, “Maximum Number of Disjoint Paths Connecting Specified Terminals in a Graph,” Discrete Applied Mathematics, vol. 55(2), pp. 183-195, 1994.
    [38] X. Zhou, S. Tamura, T. Nishizeki, “Finding Edge-Disjoint Paths in Partial k-Trees,” Algorithmica, vol. 26(1), pp. 3-30, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE